ABOUT US

KRISHNA Group is a leader and a renowned name in Global Publishing Industry. The history of Krishna Group is characterized by its “Exceptional Continuity in delivering Quality”. Right from the inception, “Strive for Excellence” has been an important principle of the Group. Having its own image and identity, KRISHNA group has been setting unparallel standards in the world of publishing for over Seven Decades.

Today, under the leadership of M.D., Mr. S.K. Rastogi and Executive Director, Mr. Sugam Rastogi, the company operates around the globe with a team of 200+ Authors, more than 700 Titles, Dedicated Workforce, Multiple Production & Storage Facilities and 2000+ Strong Dealers, Wholesalers and Distributors Network.

AWARDS & APPRECIATION

Century International Quality Era Award (Geneva, Switzerland)
KRISHNA Group was honored with “Century International Quality Era Award”, for the year “2003”, in “Total Quality Management” category. This prestigious award was presented, at the “5th International Quality Convention”, by Mr. Jose E. Prito, President & CEO, Business Initiatives Directions (B.I.D.), Madrid (Spain). A few of the honorable citizens from more than 100 countries participated in this prestigious ceremony.

Distinguished Publisher’s Award (New Delhi)
KRISHNA Group was honored with the “Distinguished Publisher’s Award” for the year “2002”. This award was conferred to Mr. S.K. Rastogi, Managing Director, Krishna Group, for excellence in Book Production by F.E.P.I. (Federation of Educational Publishers in India). This award has been considered a benchmark in assessing National Book Production Standards.

Goel Publishing House “Estd. 1942”
It is one of the most reputed and oldest Publishing House for the books in Chemistry at Graduation and Post Graduation Level. The Publishing House has completed multiple decades of its Contribution to society and Success in delivering perfection.

KRISHNA Prakashan Media Pvt. Ltd. “Estd. 1960”
Initially Krishna Prakashan Mandir and now Krishna Prakashan Media (P) Ltd. is Global brand in Educational Publishing Sector. Krishna Prakashan is famous for publishing quality science, Technical & Management Text Books/ Reference books for graduate & post graduate students of all Indian universities.

gMASTERg Educorp “Estd. 2013”
gMASTERg Educorp, being the latest gem of “THE KRISHNA GROUP” started its operation with a vision to enlighten the world with its “Master Book” series of publications touching each and every aspect of life. As the latest entrant of KRISHNA Family, it is bound to rock the Publishing Sector with its Innovative approach in e-Publishing, e-Selling and eXports.
Mathematics & Statistics

INDEX

<table>
<thead>
<tr>
<th>Code</th>
<th>Book Name</th>
<th>Authors</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Mathematics Text Books</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>Algebra</td>
<td>A.R. Vasishtha & Others</td>
<td>01</td>
</tr>
<tr>
<td>617</td>
<td>Trigonometry</td>
<td>A.R. Vasishtha & Others</td>
<td>01</td>
</tr>
<tr>
<td>618</td>
<td>Differential Calculus</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>619</td>
<td>Integral Calculus</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>620</td>
<td>Geometry (2D & 3D)</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>621</td>
<td>Vector Calculus</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>719</td>
<td>Linear Algebra</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>720</td>
<td>Matrices</td>
<td>A.R. Vasishtha & Others</td>
<td>02</td>
</tr>
<tr>
<td>721</td>
<td>Differential Equations</td>
<td>A.R. Vasishtha & Others</td>
<td>03</td>
</tr>
<tr>
<td>722</td>
<td>Integral Transforms</td>
<td>A.R. Vasishtha & Others</td>
<td>03</td>
</tr>
<tr>
<td>723</td>
<td>Statics</td>
<td>A.R. Vasishtha & Others</td>
<td>03</td>
</tr>
<tr>
<td>799</td>
<td>Dynamics</td>
<td>A.R. Vasishtha & Others</td>
<td>03</td>
</tr>
<tr>
<td>744</td>
<td>Real Analysis</td>
<td>A.R. Vasishtha & Hemlata Vasishtha</td>
<td>03</td>
</tr>
<tr>
<td>745</td>
<td>Complex Analysis</td>
<td>A.R. Vasishtha & Hemlata Vasishtha</td>
<td>04</td>
</tr>
<tr>
<td>746</td>
<td>Numerical Analysis & Programming in C</td>
<td>A.R. Vasishtha & Hemlata Vasishtha</td>
<td>04</td>
</tr>
<tr>
<td>756</td>
<td>Linear Programming</td>
<td>A.R. Vasishtha & R.K. Gupta</td>
<td>04</td>
</tr>
<tr>
<td>757</td>
<td>Differential Geometry & Tensor Analysis</td>
<td>Batuk Prasad Singh & Chauhan</td>
<td>04</td>
</tr>
<tr>
<td>796</td>
<td>Analysis</td>
<td>A.R. Vasishtha & Others</td>
<td>05</td>
</tr>
<tr>
<td>797</td>
<td>Linear Programming</td>
<td>A.R. Vasishtha & Others</td>
<td>05</td>
</tr>
<tr>
<td>844</td>
<td>Mathematical Methods</td>
<td>A.R. Vasishtha & Others</td>
<td>05</td>
</tr>
<tr>
<td>848</td>
<td>Abstract Algebra</td>
<td>A.R. Vasishtha & Others</td>
<td>05</td>
</tr>
<tr>
<td>850</td>
<td>Differential Geometry & Tensor Analysis</td>
<td>A.R. Vasishtha & Others</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Statistics Text Books</td>
<td></td>
<td></td>
</tr>
<tr>
<td>689</td>
<td>Probability</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>06</td>
</tr>
<tr>
<td>690</td>
<td>Probability Distribution & Numerical Analysis</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>06</td>
</tr>
<tr>
<td>691</td>
<td>Probability Distribution & Theory of Attributes</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>07</td>
</tr>
<tr>
<td>692</td>
<td>Statistical Methods</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>07</td>
</tr>
<tr>
<td>693</td>
<td>Statistical Inference</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>07</td>
</tr>
<tr>
<td>694</td>
<td>Survey Sampling</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>08</td>
</tr>
<tr>
<td>695</td>
<td>Analysis of Variance & Design of Experiments</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>08</td>
</tr>
<tr>
<td>698</td>
<td>Applied Statistics</td>
<td>Dr. Arun Kumar & Others</td>
<td>08</td>
</tr>
<tr>
<td>697</td>
<td>Non-Parametric Methods & Numerical Analysis</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>09</td>
</tr>
<tr>
<td>700</td>
<td>Linear Programming & Computational Techniques</td>
<td>Dr. Arun Kumar & Dr. Alka Chaudhary</td>
<td>09</td>
</tr>
<tr>
<td>Code</td>
<td>Book Name</td>
<td>Authors</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>211</td>
<td>Analytical Solid Geometry (Analytical Geometry of Three Dimensions)</td>
<td>A.R. Vasishtha & D.C. Agarwal</td>
<td>10</td>
</tr>
<tr>
<td>212</td>
<td>Advanced Differential Calculus</td>
<td>J. N. Sharma</td>
<td>10</td>
</tr>
<tr>
<td>213</td>
<td>Advanced Integral Calculus</td>
<td>D.C. Agarwal</td>
<td>11</td>
</tr>
<tr>
<td>214</td>
<td>Calculus of Finite Differences & Numerical Analysis</td>
<td>P.P. Gupta, G.S. Malik & J.P. Chauhan</td>
<td>11</td>
</tr>
<tr>
<td>215</td>
<td>Differential Equations (Gen)</td>
<td>J.N. Sharma & R.K. Gupta</td>
<td>12</td>
</tr>
<tr>
<td>216</td>
<td>Differential Geometry</td>
<td>S.C. Mittal & D.C. Agarwal</td>
<td>15</td>
</tr>
<tr>
<td>217</td>
<td>Dynamics of a Particle</td>
<td>A.R. Vasishtha & D.C. Agarwal</td>
<td>15</td>
</tr>
<tr>
<td>218</td>
<td>Fluid Dynamics</td>
<td>Shanti Swarup</td>
<td>16</td>
</tr>
<tr>
<td>219</td>
<td>Functional Analysis</td>
<td>J.N. Sharma & A.R. Vasishtha</td>
<td>17</td>
</tr>
<tr>
<td>220</td>
<td>Functions of a Complex Variable</td>
<td>J.N. Sharma</td>
<td>17</td>
</tr>
<tr>
<td>221</td>
<td>Complex Analysis</td>
<td>A.R. Vasishtha, Vipin Vasishtha & A.K. Vasishtha</td>
<td>18</td>
</tr>
<tr>
<td>222</td>
<td>Hydrodynamics</td>
<td>Shanti Swarup</td>
<td>19</td>
</tr>
<tr>
<td>223</td>
<td>Infinite Series & Products</td>
<td>J.N. Sharma & J.P. Chauhan</td>
<td>20</td>
</tr>
<tr>
<td>224</td>
<td>Integral Transforms (Transform Calculus)</td>
<td>A.R. Vasishtha & R.K. Gupta</td>
<td>21</td>
</tr>
<tr>
<td>225</td>
<td>Linear Algebra (Finite Dimensional Vector Spaces)</td>
<td>J.N. Sharma, A.R. Vasishtha & A.K. Vasishtha</td>
<td>21</td>
</tr>
<tr>
<td>226</td>
<td>Linear Difference Equations</td>
<td>Dr. R.K. Gupta & D.C. Agarwal</td>
<td>22</td>
</tr>
<tr>
<td>227</td>
<td>Integral Equations</td>
<td>Shanti Swarup & Shiv Raj Singh</td>
<td>22</td>
</tr>
<tr>
<td>228</td>
<td>Linear Programming</td>
<td>R.K. Gupta</td>
<td>23</td>
</tr>
<tr>
<td>229</td>
<td>Mathematical Analysis-I (Metric Spaces)</td>
<td>J.N. Sharma</td>
<td>24</td>
</tr>
<tr>
<td>231</td>
<td>Mathematical Analysis-II</td>
<td>J.N. Sharma & A.R. Vasishtha</td>
<td>24</td>
</tr>
<tr>
<td>232</td>
<td>Measure & Integration (Measure Theory & Functional Analysis)</td>
<td>K.P. Gupta & Ashutosh Shanker Gupta</td>
<td>26</td>
</tr>
<tr>
<td>233</td>
<td>Real Analysis (General)</td>
<td>J.N. Sharma & A.R. Vasishtha</td>
<td>27</td>
</tr>
<tr>
<td>234</td>
<td>Vector Calculus</td>
<td>J.N. Sharma & A.R. Vasishtha</td>
<td>28</td>
</tr>
<tr>
<td>236</td>
<td>Matrices</td>
<td>A.R. Vasishtha & A.K. Vasishtha</td>
<td>29</td>
</tr>
<tr>
<td>238</td>
<td>(Special Functions & Boundary Value Problems)</td>
<td>J.N. Sharma & R.K. Gupta</td>
<td>30</td>
</tr>
<tr>
<td>239</td>
<td>Special Functions (Spherical Harmonics)</td>
<td>J.N. Sharma</td>
<td>31</td>
</tr>
<tr>
<td>240</td>
<td>Vector Algebra</td>
<td>A.R. Vasishtha</td>
<td>31</td>
</tr>
<tr>
<td>241</td>
<td>Mathematical Statistics</td>
<td>J.N. Sharma & J.K. Goyal</td>
<td>32</td>
</tr>
<tr>
<td>242</td>
<td>Operations Research</td>
<td>R.K. Gupta</td>
<td>33</td>
</tr>
<tr>
<td>243</td>
<td>Rigid Dynamics-I (Dynamics of Rigid Bodies)</td>
<td>P.P. Gupta & G.S. Malik</td>
<td>35</td>
</tr>
<tr>
<td>244</td>
<td>Rigid Dynamics-II (Analytical Dynamics)</td>
<td>P.P. Gupta & Sanjay Gupta</td>
<td>36</td>
</tr>
<tr>
<td>Code</td>
<td>Book Name</td>
<td>Authors</td>
<td>Page No.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>244</td>
<td>Set Theory and Related Topics</td>
<td>K.P. Gupta</td>
<td>37</td>
</tr>
<tr>
<td>245</td>
<td>Spherical Astronomy</td>
<td>S.K. Sharma, R.K. Gupta & D. Kumar</td>
<td>37</td>
</tr>
<tr>
<td>246</td>
<td>Statics (With Attraction & Potential)</td>
<td>J.K. Goyal & K.P. Gupta</td>
<td>38</td>
</tr>
<tr>
<td>247</td>
<td>Tensor Calculus and Riemannian Geometry</td>
<td>D.C. Agarwal</td>
<td>39</td>
</tr>
<tr>
<td>249</td>
<td>Topology (General & Algebraic)</td>
<td>J.N. Sharma & J.P. Chauhan</td>
<td>40</td>
</tr>
<tr>
<td>250</td>
<td>Discrete Mathematics</td>
<td>M.K. Gupta</td>
<td>41</td>
</tr>
<tr>
<td>251</td>
<td>Advanced Mathematics for Pharmacists</td>
<td>A.R. Vasishtha & Others</td>
<td>41</td>
</tr>
<tr>
<td>252</td>
<td>Basic Mathematics for Chemists</td>
<td>A.R. Vasishtha & A.K. Vasishtha</td>
<td>42</td>
</tr>
<tr>
<td>254</td>
<td>Number Theory</td>
<td>Hari Kishan</td>
<td>44</td>
</tr>
<tr>
<td>255</td>
<td>Bio-Mathematics</td>
<td>Bhupendra Singh & Neenu Agarwal</td>
<td>45</td>
</tr>
<tr>
<td>336</td>
<td>Cryptography and Network Security</td>
<td>Dr. Manoj Kumar</td>
<td>45</td>
</tr>
<tr>
<td>526</td>
<td>Partial Differential Equations</td>
<td>Dr. R.K. Gupta</td>
<td>46</td>
</tr>
<tr>
<td>529</td>
<td>Advanced Abstract Algebra</td>
<td>S.K. Pundir</td>
<td>47</td>
</tr>
<tr>
<td>538</td>
<td>Spherical Astronomy & Space Dynamics</td>
<td>J.P. Chauhan</td>
<td>48</td>
</tr>
<tr>
<td>539</td>
<td>Space Dynamics</td>
<td>J.P. Chauhan</td>
<td>48</td>
</tr>
<tr>
<td>592</td>
<td>Advanced Mathematical Methods</td>
<td>Shiv Raj Singh</td>
<td>49</td>
</tr>
<tr>
<td>679</td>
<td>Fuzzy Set Theory</td>
<td>Shiv Raj Singh & Chaman Singh</td>
<td>49</td>
</tr>
<tr>
<td>851</td>
<td>Advanced Numerical Analysis</td>
<td>Prof. P.P. Gupta, G.S. Malik & J.P. Chauhan</td>
<td>50</td>
</tr>
<tr>
<td>852</td>
<td>Analysis-I (Real Analysis)</td>
<td>J.P. Chauhan</td>
<td>50</td>
</tr>
<tr>
<td>260</td>
<td>Real Analysis</td>
<td>A.R. Vasishtha & Vipin Vasishtha</td>
<td>51</td>
</tr>
<tr>
<td>864</td>
<td>Calculus of Variations</td>
<td>Mukesh Kumar Singh</td>
<td>51</td>
</tr>
</tbody>
</table>

Fully Solved Series for IAS/PCS and Other Competitions

<table>
<thead>
<tr>
<th>Code</th>
<th>Series: Trigonometry</th>
<th>Authors</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>Series: Matrices</td>
<td>A.R. Vasishtha & A.K. Vasishtha</td>
<td>52</td>
</tr>
<tr>
<td>451</td>
<td>Series: Modern Algebra</td>
<td>A.R. Vasishtha & Kiran Vasishtha</td>
<td>57</td>
</tr>
<tr>
<td>457</td>
<td>Series: Real Analysis</td>
<td>A.R. Vasishtha, A.K. Vasishtha & Hemlata Vasishtha</td>
<td>59</td>
</tr>
<tr>
<td>459</td>
<td>Series: Hydrostatics</td>
<td>A.R. Vasishtha, A.K. Vasishtha</td>
<td>60</td>
</tr>
</tbody>
</table>
Contents

B.Sc. Mathematics

Text Cum Reference Books

616-23 (B)

Algebra

- A.R. Vasishtha & Others

[Fully Solved Series Available]

- Sequence and its convergence (basic idea)
- Convergence of infinite series
- Comparison test
- Ratio test
- Root test
- Raabe’s test
- Logarithmic ratio test
- Cauchy’s condensation test
- De Morgan and Bertrand test and higher logarithmic ratio test
- Alternating series
- Leibnitz test
- Absolute and conditional convergence
- Congruence modulo m relation
- Equivalence relations and partitions
- Definition of a group with examples and simple properties
- Permutation groups
- Subgroups
- Centre and normalizer
- Cyclic groups
- Coset decomposition
- Lagrange’s theorem and its consequences
- Homomorphism and Isomorphism
- Cayley’s theorem
- Normal subgroups
- Quotient group
- Fundamental theorem of homomorphism
- Conjugacy relation
- Class equation
- Direct product
- Introduction to rings
- Subrings
- Integral domains and fields
- Characteristic of a ring
- Homomorphism of rings
- Ideals
- Quotient rings.

617-23

Trigonometry

- A.R. Vasishtha & Others

[Fully Solved Series Available]

- Complex Numbers
- Inverse Circular Functions
- General and Principal Values of Inverse Circular Functions
- Relations between Inverse Functions
- Some Important Results about Inverse Functions
- Complex Numbers
- Addition of Complex Numbers
- Multiplication of Complex Numbers
- Difference of two Complex Numbers
- Division in C
- The Symbol i and its Powers
- Conjugate of a Complex Numbers
- Modulus of a Complex Number
- Some Important Results about Complex Numbers
- Modulus-Argument Form or Polar Standard Form or Trigonometric Form of a Complex Numbers
- De Moivre’s Theorem
- Exponential, Trigonometric and Hyperbolic functions of a Complex Variable (Separation into real & Imaginary parts)
- The Exponential Function of a Complex Variable
- Index Law for the Exponential Functions
- Trigonometrical Functions or Circular Functions of a Complex Variable
- Euler’s Theorem
- Periodicity of Functions
- De Moivre’s Theorem for Complex Argument
- Standard Trigonometrical Results for Complex Arguments
- Hyperbolic Functions
- Relations between Hyperbolic and Circular Functions
- Properties of Hyperbolic Functions
- Expansions in Series for sinh x and cosh x
- Periods of Hyperbolic Functions
- Separation into Real and Imaginary Parts
- Logarithms of Complex Numbers
- Logarithms in the Set of Real Numbers
- Logarithms of Complex Numbers
- Principal and General Values of Logarithm of a Non-Zero Complex Number
- Properties of the Logarithmic Function
- Working Rule to Evaluate Log (x + iy) i.e., to Express Log (x + iy) in the Form A+iB
- Logarithm of a Positive Real Number in the Set of Complex Numbers
- Logarithm of a Negative Real Number
- The General Exponential Function a^z
- To Separate $(a + iB)^p + iq$ into Real and Imaginary Parts
- Inverse Circular and Hyperbolic Functions of Complex Numbers
- Inverse Circular Functions of Complex Numbers
- Inverse Hyperbolic Functions
- Relations between Inverse Hyperbolic Functions and Inverse Circular Functions
- Gregory’s Series
- General Theorem on Gregory’s Series
- Value of π
- Summation of Trigonometrical Series
- C + i S Method for Summing Up Trigonometric Series
- Series Based on Geometric Progression or Arithmetic-Geometric Series
- Series Based on Binomial Expansions
- Series Based on Exponential Series
- Series Based on Logarithmic Series and its Sub-Case Gregory’s Series
- The Difference Method
- Angles in Arithmetical Progression.
Contents

Differential Calculus
- A.R. Vasishtha & Others

- $\varepsilon-\delta$ definition of the limit of a function
- Continuous functions and classification of discontinuities
- Differentiability
- Chain rule of Differentiability
- Rolle’s theorem
- First and second mean value theorems
- Taylor’s theorems with Lagrange’s and Cauchy’s forms of remainder
- Successive differentiation and Leibnitz’s theorem
- Expansion of functions (in Taylor’s and Maclaurin’s series)
- Indeterminate forms
- Partial differentiation and Euler’s theorem
- Jacobians
- Maxima and Minima (for functions of two variables)
- Tangents and normals (polar form only)
- Curvature
- Envelopes and evolutes
- Asymptotes
- Tests for concavity and convexity
- Points of inflexion
- Multiple points
- Tracing of curves in Cartesian and Polar coordinates.

Integral Calculus
- A.R. Vasishtha & Others

- Reduction Formulae (For Trigonometric Functions)
- Reduction Formulae Continued (For Irrational Algebraic and Transcendental Functions)
- Beta and Gamma Functions
- Multiple Integrals (Double and Triple Integrals, Change of Order of Integration)
- Dirichlet’s and Liouville’s Integrals
- Areas of Curves
- Rectification (Lengths of Arcs and Intrinsic Equations of Plane Curves)
- Volumes and Surfaces of Solids of Revolution.

Geometry (2D & 3D)
- A.R. Vasishtha & Others

- General equation of second degree
- Tracing of conics
- System of conics
- Confocal conics
- Polar equation of a conic and its properties
- Three dimensional system of co-ordinates
- Projection and direction cosines
- Plane
- Straight line
- Sphere
- Cone and cylinder
- Central conicoids
- Reduction of general equation of second degree
- Tangent plane and normal to a conicoid
- Pole and polar
- Conjugate diameters
- Generating lines
- Plane sections.

Vector Calculus
- A.R. Vasishtha & Others

- Vector differentiation and integration
- Gradient
- Divergence and curl and their properties
- Line integrals
- Theorems of Gauss
- Green and Stokes and problems based on these.

Linear Algebra
- A.R. Vasishtha & Others

- Vector spaces and their elementary properties
- Subspaces
- Linear dependence and independence
- Basis and dimension
- Direct sum
- Quotient space
- Linear transformations and their algebra
- Range and null space
- Rank and nullity
- Matrix representation of linear transformations
- Change of basis
- Linear functionals
- Dual space
- Bi-dual space
- Natural isomorphism
- Annihilators
- Bilinear and quadratic forms
- Inner product spaces
- Cauchy-Schwarz’s inequality
- Bessel’s inequality and orthogonality.

Matrices
- A.R. Vasishtha & Others

- Symmetric and skew-symmetric matrices
- Hermitian and skew-Hermitian matrices
- Orthogonal and unitary matrices
- Triangular and diagonal matrices
- Rank of a matrix
- Elementary transformations
- Echelon and normal forms
- Inverse of a matrix by elementary transformations
- Characteristic equation
- Eigen values and eigen vectors of a matrix
- Cayley-Hamilton’s theorem and its use in finding inverse of a matrix
- Application of matrices to solve a system of linear (both homogeneous and non-homogeneous) equations
- Consistency and general solution
- Diagonalization of square matrices with distinct eigen values
- Quadratic forms.
Contents

Differential Equations

721-17 (B)
• Formation of a differential equation (D.E.)
• Degree, order and solution of D.E.
• Equations of first order and first degree: Separation of variables method
• Solution of homogeneous equations
• Linear equations and exact equations
• Linear differential equations with constant coefficients
• Homogeneous linear differential equations
• Differential equations of the first order but not of the first degree
• Clairaut’s equations and singular solutions
• Orthogonal trajectories
• Simultaneous linear differential equations with constant coefficients
• Linear differential equations of the second order (including the method of variation of parameters)
• Series solutions of second order differential equations
• Legendre and Bessel functions (\(P_n\) and \(J_n\) only) and their properties
• Order, degree and formation of partial differential equations
• Partial differential equations of the first order
• Lagrange’s equations
• Charpit’s general method
• Linear partial differential equations with constant coefficients
• Partial differential equations of the second order
• Monge’s method.

Integral Transforms

722-17 (B)
• The concept of transform
• Integral transforms and kernel
• Linearity property of transforms
• Laplace transform
• Inverse Laplace transform
• Convolution theorem
• Applications of Laplace transform to solve ordinary differential equations
• Fourier transforms (finite and infinite)
• Fourier integral
• Applications of Fourier transform to boundary value problems
• Fourier series.

Statics

723-13 (B)
• Common catenary
• Centre of gravity
• Stable and unstable equilibrium
• Virtual work
• Forces in three dimensions
• Poinsot’s central axis
• Wrenches
• Null line and null plane.

Dynamics

799-13
• Velocity and acceleration along radial and transverse directions and along tangential and normal directions
• Simple harmonic motion
• Motion under other laws of forces
• Earth attraction
• Elastic strings
• Motion in resisting medium
• Constrained motion (circular and cycloidal only)
• Motion on smooth and rough plane curves
• Rocket motion
• Central orbits and Kepler’s law
• Motion of a particle in three dimensions.

Real Analysis

744-02 (B)
• Axiomatic study of real numbers
• Completeness property in \(\mathbb{R}\)
• Archimedean property
• Countable and uncountable sets
• Neighbourhood
• Interior points
• Limit points
• Open and closed sets
• Derived sets
• Dense sets
• Perfect sets
• Bolzano-Weierstrass theorem
• Sequences of real numbers
• Subsequences
• Bounded and monotonic sequences
• Convergent sequences
• Cauchy’s theorems on limit
• Cauchy sequence
• Cauchy’s general principle of convergence
• Uniform convergence of sequences and series of functions
• Weierstrass M-test
• Abel’s and Dirichlet’s tests
• Sequential continuity
• Boundness and intermediate value properties of continuous functions
• Uniform continuity
• Meaning of sign of derivative
• Darboux theorem
• Limit and continuity of functions of two variables
• Taylor’s theorem for functions of two variables
• Maxima and minima of functions of three variables
• Lagrange’s method of undetermined multipliers
• Riemann integral
• Integrability of continuous and monotonic functions
• Fundamental theorem of integral calculus
• Mean value theorems of integral calculus
• Improper integrals and their convergence
• Comparison test
• \(\mu\)-test
• Abel’s test
• Dirichlet’s test
• Integral as a function of a parameter and its differentiability and integrability
• Definition and examples of metric spaces
• Neighbourhoods
• Interior points
• Limit points
• Open and closed sets
• Subspaces
• Convergent and Cauchy sequences
• Completeness
• Cantor’s intersection theorem.
Complex Analysis

- Functions of a complex variable
- Concepts of limit
- Continuity and differentiability of complex functions
- Analytic functions
- Cauchy-Riemann equations (Cartesian and polar form)
- Harmonic functions
- Orthogonal system
- Power series as an analytic function
- Elementary functions
- Mapping by elementary functions
- Linear and bilinear transformations
- Fixed points
- Cross ratio
- Inverse points and critical points
- Conformal transformations
- Complex Integration
- Line integral
- Cauchy's fundamental theorem
- Cauchy's integral formula
- Morera's theorem
- Liouville theorem
- Maximum Modulus theorem
- Taylor and Laurent series
- Singularities and zeros of an analytic function
- Rouche's theorem
- Fundamental theorem of algebra
- Analytic continuation
- Residue theorem and its applications to the evaluation of definite integrals
- Argument principle.

Numerical Analysis & Programming in C

- Shift operator
- Forward and backward difference operators and their relationships
- Fundamental theorem of difference calculus
- Interpolation
- Newton-Gregory's forward and backward interpolation formulae
- Divided differences
- Newton's divided difference formula
- Lagrange's interpolation formula
- Central differences
- Formulæ based on central differences: Gauss, Striling's, Bessel's and Everett's interpolation formulæ
- Numerical differentiation
- Numerical integration
- General quadrature formula
- Trapezoidal and Simpson's rules
- Weddle's rule
- Cote's formula
- Numerical solution of first order differential equations: Euler's method
- Picard's method
- Runge-Kutta method and Milne's method
- Numerical solution of linear, homogeneous and simultaneous difference equations
- Generating function method
- Solution of transcendental and polynomial equations by iteration, bisection
- Regula-Falsi and Newton-Raphson methods
- Algebraic eigen value problems: Power method
- Jacobi's method
- Given's method
- Householder's method and Q-R method
- Approximation: Different types of approximations
- Least square polynomial approximation
- Polynomial approximation using orthogonal polynomials
- Legendre approximation
- Approximation with trigonometric functions
- Exponential functions
- Rational functions
- Chebyshev polynomials
- Programmer's model of computer
- Algorithms
- Data type
- Arithmetic and input/output instruction
- Decisions
- Control structures
- Decision statements
- Logical and conditional operators
- Loop case control structures
- Functions
- Recursion
- Preprocessors
- Arrays
- Puppetting of strings
- Structures
- Pointers
- File formatting.

Linear Programming

- Linear programming problems
- Statement and formation of general linear programming problems
- Graphical method
- Slack and surplus variables
- Standard and matrix forms of linear programming problem
- Basic feasible solution
- Convex sets
- Fundamental theorem of linear programming
- Simplex method
- Artificial variables
- Big-M method
- Two phase method
- Resolution of degeneracy
- Revised simplex method
- Sensitivity Analysis
- Duality in linear programming problems
- Dual simplex method
- Primal-dual method
- Integer programming
- Transportation problems
- Assignment problems.

Differential Geometry & Tensor Analysis

- Local theory of Curves: Space curves
- Examples
- Plane curves
- Tangent and normal and binormal
- Osculating plane
- Normal plane and rectifying plane
- Helices
- Serret-Frenet apparatus
- Contact between curve and surfaces
- Tangent surfaces
- Involutes and evolutes of curves
- Intrinsic equations
- Fundamental existence theorem for space curves
- Local theory of Surfaces-Parametric patches on surface curve of a surface
- Surfaces of revolutions
- Helicoids
- Metric-first fundamental form and arc length
- Local theory of surfaces (Contd.)
- Direction coefficients
- Families of curves
- Intrinsic properties
- Geodesics, canonical geodesic equations, normal properties of geodesics
- geodesics curvature, geodesics polars
- Gauss-Bonnet theorem
- Gaussian curvature
- Normal curvature
- Meusnier's theorem
- Mean curvature
- Gaussian curvature
- Umbilic points
- Lines of curvature
- Rodrigue's formula
- Euler's theorem
- The fundamental equation of surface theory
- The equation of Gauss, the equation of Weingarten, the Mainardi-Codazzi equation
- Tensor algebra: Vector spaces
- The dual spaces
- Tensor product of vector spaces
- Transformation formulæ
- Contraction
- Special tensor
- Inner product
- Associated tensor
- Differential Manifold-examples
- Tangent vectors
- Connexions
- Covariant differentiation
- Elements of general Riemannian geometry-Riemannian metric
- The fundamental theorem of local Riemannian Geometry
- Differential parameters
- Curvature tensor
- Geodesics
- Geodesics curvature
- Geometrical interpretation of the curvature tensor and special Riemannian spaces
- Contravariant and covariant vectors and tensors
- Mixed tensors
- Symmetric and skew-symmetric tensors
- Algebra of tensors
- Contraction and inner product
- Quotient theorem
- Reciprocal tensors
- Christoffel's symbols
- Covariant differentiation
- Gradient
- Divergence and curl in tensor notation.
Analysis

- A.R. Vasishtha & Others

[Fully Solved Series Available]

- Axiomatic study of real numbers
- Completeness property in R
- Archimedean property
- Countable and uncountable sets
- Neighbourhoods
- Interior points
- Limit points
- Open and closed sets
- Derived sets
- Dense sets
- Perfect sets
- Bolzano-Weierstrass theorem
- Sequences of real numbers
- Subsequences
- Bounded and monotonic sequences
- Convergent sequences
- Cauchy's theorems on limit
- Cauchy sequence
- Cauchy's general properties of convergence
- Sequential continuity
- Boundness and intermediate value properties of continuous functions
- Uniform continuity
- Meaning of sign of derivative
- Riemann integral
- Integrability of continuous and monotonic functions
- Fundamental theorem of integral calculus
- Mean value theorems of integral calculus
- Improper integrals and their convergence
- Comparison test
- Abel's test
- Dirichlet's test
- Integral as a function of a parameter and its differentiability and integrability
- Functions of a complex variable
- Concepts of limit
- Continuity and differentiability of complex functions
- Analytic functions
- Cauchy Riemann equations (Cartesian and polar form)
- Harmonic functions
- Orthogonal system
- Power series as an analytic function
- Elementary functions
- Mapping by elementary functions
- Linear and bilinear transformations
- Fixed points
- Cross ratio
- Inverse points and critical points
- Conformal transformations.

Linear Programming

- A.R. Vasishtha & Others

[Fully Solved Series Available]

- Linear programming problems
- Statement and formation of general linear programming problems
- Graphical method
- Slack and surplus variables
- Standard and matrix forms of linear programming problem
- Basic feasible solution
- Convex sets
- Fundamental theorem of linear programming
- Simplex method
- Artificial variables
- Big-M method
- Two phase method
- Resolution of degeneracy
- Revised simplex method
- Sensitivity Analysis
- Duality in linear programming problems
- Dual simplex method
- Primal-dual method
- Integer programming
- Transportation problems
- Assignment problems
- Goal Programming
- Concept of goal programming, formulation and methodology for solution of goal programming.

Mathematical Methods

- A.R. Vasishtha & Others

- Definition of a sequence
- Theorems on limits of sequences
- Bounded and Monotonic sequences
- Cauchy sequence
- Limit superior and limit inferior of a sequence
- Subsequence
- Series of non-negative terms
- Comparison tests
- Cauchy's integral test
- Ratio tests
- Root test
- Raabe's logarithmic
- De Morgan and Bertrand's tests
- Alternating series
- Leibnitz's theorem
- Absolute and conditional convergence
- The concept of transform
- Integral transform
- Kernel
- Laplace Transformation
- Linearity of the Laplace transformation
- Existence theorem for Laplace transforms
- Laplace transforms of derivatives and integrals
- Shifting theorems
- Differentiation and Integration of Laplace transforms
- Convolution theorem
- Inverse Laplace transforms
- Solution of system of differential equations using the Laplace transformation
- Fourier transforms (finite and infinite)
- Fourier integral
- Applications of Fourier transform to boundary value problems
- Fourier series
- Calculus of variations
- Variational problems with fixed boundaries
- Euler's equation for functionals containing first order derivative and one independent variable
- Extremals
- Functionals dependent on higher order derivatives
- Functionals dependent on more than one independent variable
- Variational problems in parametric form
- Invariance of Euler's equation under coordinates transformation
- Partial differential equations of the first order
- Lagrange's solution
- Some special types of equations which can be solved easily by methods other than the general methods
- Charpit's general method of solution
- Partial differential equations of the second and higher orders
- Classification of linear partial differential equations of second order
- Homogeneous and non-homogeneous equations with constant coefficients
- Partial differential equations reducible to equations with constant coefficients
- Monge's method.

Abstract Algebra

- A.R. Vasishtha & Others

- Automorphism
- Inner automorphism
- Automorphism groups and their computations
- Conjugacy relations
- Normalizer
- Counting principle and the class equation of a finite group
- Center of group of prime power order
- Sylow's theorems
- Sylow p-subgroup
- Prime and maximal ideals
- Euclidean Rings
- Principal ideal rings
- Polynomial Rings
- Polynomial over the Rational Field
- The Eisenstein Criterion
- Polynomial Rings over Commutative Rings
- Unique factorization domain
- R is unique factorization domain implies so is \(P[x_1, x_2, ..., x_n] \)
- Direct sum
- Quotient space
- Linear transformations and their representation as matrices
- The Algebra of linear transformations
- Rank nullity theorem
- Change of basis
- Linear...
Differential Geometry & Tensor Analysis

850-01 (B)

Differential Geometry & Tensor Analysis

–A.R. Vasishtha & Others

- Local theory of curves
 - Space curves
 - Examples
 - Plane curves
 - Tangent and normal and binormal
 - Osculating plane
 - Normal plane and rectifying plane
 - Helices
 - Serret-Frenet apparatus
 - Contact between curve and surfaces, tangent surfaces
 - Involutes and evolutes of curves
 - Intrinsic equations
 - Fundamental existence theorem for space curves
 - Local theory of surfaces - Parametric patches on surface curve of a surface
 - Surfaces of revolutions
 - Helicoids
 - Metric-first fundamental form and arc length
 - Local theory of surfaces (Contd.)
 - Direction coefficients
 - Families of curves
 - Intrinsic properties
 - Geodesics
 - Canonical geodesic equations
 - Normal properties of geodesics
 - Geodesics curvature
 - Geodesics polars
 - Gauss-Bonnet theorem
 - Gaussian curvature
 - Normal curvature
 - Meusnier's theorem
 - Mean curvature
 - Gaussian curvature
 - Umbilic points
 - Lines of curvature
 - Rodrigue's formula
 - Euler's theorem
 - The fundamental equation of surface theory - The equation of Gauss
 - The equation of Weingarten
 - The Mainardi-Codazzi equation
 - Tensor algebra: Vector spaces
 - The dual spaces
 - Tensor product of vector spaces
 - Transformation formulae
 - Contraction
 - Special tensor
 - Inner product
 - Associated tensor
 - Differential Manifold-examples
 - Tangent vectors
 - Connexions
 - Covariant differentiation
 - Elements of general Riemannian geometry-Riemannian metric
 - The fundamental theorem of local Riemannian Geometry
 - Differential parameters
 - Curvature tensor
 - Geodesics
 - Geodesics curvature
 - Geometrical interpretation of the curvature tensor and special Riemannian spaces

Tensor Analysis
- Contravariant and covariant vectors and tensors
- Mixed tensors
- Symmetric and skew-symmetric tensors
- Algebra of tensors
- Contraction and inner product
- Quotient theorem
- Reciprocal tensors
- Christoffel's symbols
- Covariant differentiation
- Gradient
- Divergence and curl in tensor notation.

B.Sc. Statistics

689-08

Probability

–Dr. Arun Kumar & Dr. Alka Chaudhary

- Introduction to Probability Theory
 - History and Relevance of Probability Theory
 - Some Basic Definitions of Probability
 - Sample Space and Algebra of Events
 - Rules of Counting
 - Three Approaches to Probability
 - Probability Rules
 - Independent Events
 - Baye's Theorem
 - Random Variables and Mathematical Expectation
 - Random Variables
 - Discrete Probability Distributions
 - Continuous Probability Distributions
 - Joint Probability Distributions
 - Marginal Distributions
 - Conditional Distributions
 - Independence of Random Variables and Mathematical Expectation
 - Independence of Random Variables
 - Mathematical Expectation
 - Laws of Expectation
 - Moments
 - Correlation Coefficient of Two Random Variables
 - Conditional Expectation
 - Generating Functions and Law of Large Numbers
 - Introduction of Generating Functions
 - Chebyshev's Inequality
 - Law of Large Numbers
 - Central Limit Theorem
 - Tables.

690-06 (B)

Probability Distribution & Numerical Analysis

–Dr. Arun Kumar & Dr. Alka Chaudhary

- Discrete Univariate Distributions
 - Introduction
 - Discrete Uniform Distribution
 - Bernoulli Distribution
 - Binomial Distribution
 - Poisson Distribution
 - Negative Binomial Distribution
 - Hypergeometric Distribution
 - Continuous Univariate Distributions
 - Introduction
 - Uniform Distribution
 - Normal Distribution
 - Exponential Distribution
 - Gamma Distribution
 - Beta Distribution
 - Cauchy Distribution
 - Laplace Distribution
 - Pareto Distribution
 - Exact Sampling Distributions
 - Introduction
 - Distributions of Functions of Random Variable
 - Chi-Square Distribution
 - t-Distribution
 - F-Distribution
 - Inter-Relationships between \(\chi^2, t \) and F-Distribution
 - Bivariate Normal Distribution
 - Finite Differences
 - Introduction
 - Symbol used in Finite Differences Calculus
 - The Operators \(E \) and \(A \)
 - Relationship between \(E \) and \(D \)
 - The Difference Table
 - Factorial Functions
 - Differences of Zero
 - Effect of an Error in a Tabular Value
 - Interpolation
 - Introduction
 - Interpolation with Equal Intervals
 - Interpolation with Unequal Intervals
 - Central Differences
 - Numerical Integration
 - Introduction
 - General Quadrature Formula for Equidistant
 - Contd...
...Contd: Probability Distribution & Numerical Analysis

Ordinates • The Trapezoidal Rule • Simpson’s One-Third Rule • Simpson’s Three Eighth’s Rule • Weedle’s Rule • Error in Quadrature Formula • Cote’s Method • Numerical Differentiation • Introduction • Derivatives Using Forward Difference Formula • Derivatives Using Backward Difference Formula • Derivatives Using Central Difference Formulae • Derivatives of a Function when the given Arguments are not Equally Spaced • Tables.

Probability Distribution & Theory of Attributes — Dr. Arun Kumar & Dr. Alka Chaudhary

• Discrete Univariate Distributions • Introduction • Discrete Uniform Distribution • Bernoulli Distribution • Binomial Distribution • Poisson Distribution • Negative Binomial Distribution • Hypergeometric Distribution • Continuous Univariate Distributions • Introduction • Uniform Distribution • Normal Distribution • Exponential Distribution • Gamma Distribution • Beta Distribution • Cauchy Distribution • Exact Sampling Distributions • Introduction • Distributions of Function of Random Variables • Chi-Square Distribution • t-Distribution • F-Distribution • Inter-Relationships between \(\chi^2, t \) and \(F \)-Distributions • Theory of Attributes • Introduction • Concept and Definitions • An Important Notation • Consistency of Data • Independence of Attributes • Association of Attributes • Coefficient of Association • Coefficient of Colligation • Contingency Table • Association in a Contingency Table • Tables.

Statistical Methods — Dr. Arun Kumar & Dr. Alka Chaudhary

• Definition, Functions, Limitations and Importance of Statistics • Introduction • Definition of Statistics • Other Popular Definitions of Statistics • Function of Statistics • Limitation of Statistics • Distrust of Statistics • Importance of Statistics • Statistical Tools Used in Economic Analysis • Types of Data and Scales • Introduction • Census and Sampling • Types of Data • Collection and Scrutiny of Data • Introduction • Primary and Secondary Data • Method of Collection • Scrutiny of the Data • Organisation of Data • Introduction • Classification • Object of Classification • Basis of Classification • Frequency Distribution • Method of Construction of Discrete Frequency Distribution • Method of Construction of Continuous Frequency Distribution • Basic Principles for Forming Grouped Frequency Distribution • Sturges Rule for Number of Classes and Size of Class Interval • Cumulative Frequency Distribution • Tabulation • Types of Tables • Difference between Classification and Tabulation • Diagrammatic Representation of Data • Introduction • Importance and Utility of Diagrams • Limitations of Diagrams • Rules for Constructing Diagrams • Types of Diagrams • Limitations of Diagrammatic Representation • Graphic Representation of Data • Introduction • Graphs of Frequency Distribution • Stem and Leaf Diagram • Box Plot or Box and Whisker Diagram • Measures of Central Tendency • Introduction • Objectives of Average • Characteristics of a Good Average • Various Measures of Central Tendency • Partition Values or Quantiles • Mode • Measures of Dispersion, Skewness and Kurtosis • Introduction • Objects and Importance of Dispersion • Characteristics for Satisfactory Measures of Dispersion • Absolute and Relative Measure of Variation • Measures of Dispersion • Root Mean Square Deviation • Relation between \(\sigma \) and \(S \) • Effect of Change of Origin and Scale on Standard Deviation • Combined Standard Deviation • Mathematical Properties of Standard Deviation • Moments • Relation between \(\mu \) and \(\mu' \) • Effect of Change of Origin and Scale on Moments • Sheppard’s Correction on Moments • Charlier’s Check • Pearson’s Coefficients and Fisher’s \(\gamma \) Coefficients • Skewness • Measures of Skewness • Kurtosis • Method of Least Squares and Curve Fitting • Introduction • Method of Least Squares • System of Linear Equations • Curve Fitting • Correlation and Regression • Univariate and Bivariate Distributions • Correlation • Types of Correlation • Scatter Diagram or Dot Diagram • Karl Pearson’s Coefficient of Correlation • Assumptions • Properties of Correlation Coefficient (\(r \)) • Correlation in Grouped Data • Coefficient of Determination • Rank Correlation • Regression • Angle between Two Regression Lines • Properties of Regression Coefficients • Method of Fitting Regression Lines from a Bivariate Data • Bi-spherical Correlation • Multiple and Partial Correlation • Introduction • Multiple Correlation • Partial Correlation • Multiple Regression Equation • Mathematical Notations (Yule’s Notation) • Properties of Residuals • Variance of Residuals • Expression for Coefficient of Multiple Correlation • Expression for Coefficient of Partial Correlation • Theory of Attributes • Introduction • Concepts and Definitions • An Important Notation • Consistency of Data • Independence of Attributes • Association of Attributes • Coefficient of Association • Coefficient of Colligation • Contingency Table • Association in a Contingency Table • Logarithm and Antilogarithm Table.

Statistical Inference — Dr. Arun Kumar & Dr. Alka Chaudhary

• Point Estimation • Introduction • Population and Sample • Parameter and Statistic • Theoretical Population and its Random Sample • Sampling Distribution • Standard Error • Statistical Inference: An Overview • Estimation • Criteria of a Good Estimator • Methods of Estimation • Testing of Hypothesis • Introduction • Hypothesis and its Types • Critical and Acceptance Region • Two Types of Error • Level of Significance • Power Function

Contd...
Survey Sampling

- Introduction and Basic Concepts of Sampling
- Introduction
- Advantages of Sample Survey
- Disadvantages of Sample Survey
- The Principal Steps in a Sample Survey
- Concepts, Definitions and Terminology
- Desirable Properties of an Estimator
- Sampling Errors
- Non-Sampling Errors
- Sampling Distribution
- Various Sampling Procedures
- Simple Random Sampling
- Introduction
- Various Probabilities of Selection
- How to Select a Simple Random Sample?
- Different Sets of Random Numbers
- Modified Procedure Based on Random Numbers
- Notation and Terminology
- Some Theorems Relating to Simple Random Sampling
- Without Replacement (SRSW)
- Some Theorems Relating to Simple Random Sampling
- with Replacement (SRSWR)
- Confidence Interval
- Stratified Random Sampling
- Introduction
- Advantages of Stratified Random Sampling
- Over Simple Random Sampling
- Notations and Terminology
- Two Estimates of Population Mean
- Confidence Limits
- Allocation of Sample Size
- Systematic Sampling
- Difference between Stratified Random Sampling and Systematic Sampling
- Advantages of Systematic Sampling
- Disadvantages of Systematic Sampling
- Uses of Systematic Sampling
- Notation and Terminology
- Estimator of the Population Mean
- Systematic Sampling versus Simple Random Sampling
- Comparison of Systematic with Simple and Stratified Random Sampling
- Population with Periodic Variation
- Auto-Correlated Population
- Population in Random Order
- Ratio and Regression Method of Estimation
- Introduction
- Concept of r and R
- Notations and Terminology
- Ratio Estimator
- Bias of the Ratio Estimator
- First and Second Order Approximation to Bias
- Mean Square Error of Ratio Estimate
- Conditions for which Ratio Estimate is Better than SRS
- Properties of Ratio Estimate
- Why Ratio Estimation is Used?
- Difference Estimate
- Value of k for which Variance of r_D is Minimum
- Regression Estimate
- Bias of Regression Estimate
- Mean Square Error of Regression Estimate
- Some other Sampling Schemes
- Cluster Sampling
- Notations and Terminology
- Difference between Stratified Random Sampling and Cluster Sampling
- Efficiency with Respect of SRS
- Clusters of Unequal Size
- Double Sampling in Ratio Method of Estimation
- Regression Estimate in Double Sampling
- Double Sampling for Stratification
- Non-Sampling and Sampling Errors
- Introduction
- Classification of Errors
- Type of Non-Sampling Errors
- Control Measure
- Statistical Organisation in India
- Central Statistical Organisation (C.S.O)
- National Sample Survey Organisation (NSSO)
- Governing Council
- Working Groups (WG)
- Socio-Economic Surveys
- Sarvekshana, NSSO Bulletin
- United Nations World Food Programme (UNWFP)
- Agricultural Statistics
- Price Data Collection
- Urban Frame Survey
- Industrial Statistics
- Annual Survey of Industries
- Labour Bureau
- Army Statistical Organisation (ASO)
- Some Non-Government Statistical Organisations
- Statistical Organisation in States
- Statistical Organisation in U.P. and Uttaranchal
- Tables.

Analysis of Variance & Design of Experiments

- Analysis of Variance
- Introduction
- Meaning
- Assumptions
- Analysis of Variance (One-way Classified Data)
- Analysis of Two Way Classified Data with one Observation Per Cell
- Design of Experiments
- Introduction
- Meaning and Need
- Nomenclature Used in Design of Experiments
- Some Basic Points Regarding the Planning of an Experiment
- Three Principles of Design of Experiment
- Size and Shape of Plots
- Size and Shape of Blocks
- Different Experimental Designs
- Missing Plot Technique in R.B.D.
- Two Missing Observations
- Missing Plot Technique in L.S.D.
- Factorial Experiments
- Two Factors Each at 2 Levels (2^2 Factorial)
- Main Effects and Interactions
- Sum of Squares due to Factorial Effects
- Tests for Factorial Effects
- Yate’s Method of Computing Factorial Effects Total
- The Case of 3 Factors
- The General Case
- Confounding
- Situations where Partial Confounding is Preferable
- How to find Confounded Effects?
- Partial Confounding in a 2^3 Experiment
- Split Plot Design
- Comparison of a Split Plot Design with R.B.D.
- Strip Plot Design
- Analysis of Covariance
- Tables.

Applied Statistics

- Time Series
- Introduction
- Definitions
- Applications of Time Series Analysis
- Components of a Time Series
- Analysis of Time Series
- Measurement of Trend
- Measurement of Seasonal Variations
- Residual Method for Isolation of Cyclic Variations
- Index Numbers
- Introduction
- Characteristics of Index Numbers
- Uses of Index Numbers
- Points to be Considered in the Construction of Index Numbers
- Types of Index Numbers

Contd...
Non-Parametric Methods & Numerical Analysis

- Non-Parametric Inference
 - Introduction
 - Advantages and Disadvantages of Non-Parametric Tests/Methods
 - The Sign Test
 - Wilcoxon Signed Rank Test
 - Mann-Whitney U Test
 - The Runs Test
 - The Median Test
 - Kolmogorov-Smirnov Test (K-S Test)
 - Spearman’s Rank Correlation Coefficient Test
- Finite Differences
 - Introduction
 - What is Quality?
 - How Quality is Measured?
- Statistical Quality Control
 - Introduction
 - What is Quality?
 - How Quality is Measured?

Linear Programming & Computational Techniques

- Linear Programming
 - Introduction
 - Different Kinds of Linear Programming Problems
 - Basic Requirements of a C.P. Problem
 - Assumptions of Linear Programming
 - Applications of Linear Programming in Different Areas
 - Steps Involved in the Formulation of C.P. Problem
 - Solution of a Linear Programming Problem
 - Some Special Cases
 - Minimisation of Objective Function
 - Problem of Converting Minimise into Maximise
 - Transportation Problem
 - Introduction
 - Test for Optimality (Modi Method)
 - Unbalanced Transportation Problem
 - Degeneracy in Transportation Problem
 - Transportation Problem of Maximum Profit
 - Assignment Problem
 - Mathematical Formulation of Assignment Problem
 - Basic Theorem in Assignment Problem
 - Unbalanced Assignment Problem
 - Max-type Assignment Problems
 - Restrictions on Assignments (Prohibitive Assignment)
- Fundamentals of Computers
 - Introduction
 - Characteristics of a Computer
 - History of Computers
 - The Computer Generations
 - Limitations and Applications of Computer
 - Number Systems
 - Computer Organisation
 - Input Devices
 - Output Devices
 - Memory Devices
 - Classification of Secondary Storage Devices
 - Hardware and Software
 - Operating Systems
 - Classification of Computers
- Communication and Computer Languages
 - Introduction
 - Communication
 - Digital and Analog Signals
 - Modem
 - Networking
 - Internet
 - Computer Languages
 - Introduction to Database Management System (DBMS)
- Introduction to C Language
 - Algorithm and Flow Chart
 - Introduction to C Language
 - Learning Fundamentals
 - Operators and Expressions
 - Library Functions
 - C Instructions
 - Writing a C Program
 - Input and Output Statements

Control Statements and Arrays
- Introduction
- Selection Statements
- Repetitive Iterative Statements
- Jumping Statements
- Arrays
- Functions
- Appendices.
M.Sc. Mathematics

(Book for Honours & Post-Graduate Students of All Indian Universities and Competitive Examination)

211-12

Analytical Solid Geometry
(Analytical Geometry of Three Dimensions)
—A.R. Vasishtha & D.C. Agarwal

- Central Conicoids
 - The Ellipsoid
 - The Hyperboloid of one sheet
 - The Hyperboloid of two sheets
 - The tangent plane
 - The condition of tangency
 - The Director Sphere
 - The Polar Plane
 - Properties of the polar planes and the polar lines
 - Locus of chords bisected at a given point
 - Normal to a Conicoid
 - Number of normals
 - Cubic curve through the feet of the normals
 - To find the equation of the cone through six concurrent normals (the six normals drawn from a point to an ellipsoid)
 - Diametral plane
 - Conjugate diameters and conjugate diametral planes
 - The relationship between the co-ordinates of the points P, Q, R where OP, OQ and OR are the conjugate semi-diameter of an ellipsoid
 - Properties of conjugate semi-diameters of an ellipsoid
 - The Cone
 - The Paraboloids
 - The elliptic paraboloid
 - The hyperbolic paraboloid
 - The general equation
 - The normal
 - Cubic curve through the feet of the normals
 - Generating Lines
 - The generation lines of a hyperboloid of one sheet
 - Properties of the generating lines of hyperboloid of one sheet
 - Properties of the generating lines of hyperboloid of one sheet
 - Perpendicular generators
 - The generating lines of a hyperbolic paraboloid
 - Properties of generators of a hyperboloid
 - Perpendicular generators
 - To show that the generators of the λ- and μ-systems of the hyperbolic paraboloid \(x^2/a^2 - y^2/b^2 = 2z/c\) are parallel to the planes \(x/a \pm y/b = 0\)
- The Plane Sections of Conicoids
 - Nature of a plane section
 - Lengths and direction ratios of the axes of a central section
 - Non-central Plane Section
 - To Find the Lengths and Direction Cosines of the Axes of Non-Central Plane Section of a Central Conicoid
 - Plane Sections of a Paraboloid
 - To determine the nature of a given section of a paraboloid
 - To find the lengths and direction ratios of the axes of the section of the paraboloid
- Circular Sections
 - To determine the circular sections of an ellipsoid
 - To show that any two circular sections of an ellipsoid which are not parallel lie on a sphere
 - The circular sections of any central conicoid
 - The circular sections of the paraboloid
 - Umbilics
 - Umbilics
 - Definition
 - To determine the real umbilics of the ellipsoid
 - To determine the real umbilics of the paraboloid
 - Confocal Conicoids
 - Confocal conicoids
 - Definition
 - Three confocals through a given point
 - Three paraboloids through a given point
 - To prove that one confocoid confocal with a given confocoid touches a given plane
 - To prove that the confocal confocoids cut one another at right angles at all their common points, i.e., the tangent planes at any common point are at right angles
 - Elliptic co-ordinates
 - Focal Conics
 - Properties regarding the normals to three confocal conicoids through a given point P
 - The foci of conicoids
 - Reduction of General Equation of Second Degree
 - Points of Intersection
 - The tangent plane
 - The Normal
 - The Polar Plane
 - The enveloping cone
 - The enveloping cylinder
 - To find the locus of the chords which are bisected at a given point \((\alpha, \beta, \gamma)\)
 - The diametral plane
 - Principal planes and the principal directions
 - Orthogonality of the principal directions
 - Transformation of \(f(x, y, z)\)
 - The centre of the surface \(F(x, y, z) = 0\)
 - Process of reducing a general equation to the standard form and to discuss the nature
 - Surface of Revolution
 - To find the condition that a general equation of second degree namely \(F(x, y, z) = 0\), may represent a surface of revolution.

212-21

Advanced Differential Calculus
—J. N. Sharma

- Change of Independent Variables
 - To change the independent variable into the dependent variable
 - To change the independent variable \(x\) into another variable \(z\); where \(x = \phi(z)\)
 - Differentials
 - Total and partial differential coefficients
 - Transformation in the case of two independent variables
 - Transformation from Cartesian to polar co-ordinates and vice versa
 - Orthogonal transformation of \(V^2 V\)
 - Maxima and Minima (Several Independent Variables)
 - Necessary condition for the existence of maxima or minima
 - Algebraic lemma regarding the sign of quadratic expressions
 - Lagrange’s condition for two independent variables
 - Three independent variables
 - Several independent variables
 - Lagrange’s methods of undetermined multipliers
 - Jacobians
 - Definition
 - Case of function of functions; Jacobian implicit functions
 - Necessary and sufficient condition for a Jacobian to vanish;
 - Covariants and invariants
 - Continuity and Differentiability
 - Functions, Limits, Continuity
 - The four functional limits at a point
 - Kinds of discontinuous Salts, Theorems on continuity
 - Theorems on discontinuous functions, Pointwise discontinuous function
 - Uniform continuity
 - Absolute continuity
 - Continuity of a function of more than one variable
 - Differentiability
 - Meaning of the sign of the derivative, Geometrical meaning of a derivative
 - The chain rule
 - Darboux Theorem
 - Rolle’s, Taylor’s and Allied Theorems
 - Rolle’s theorem
 - Geometrical interpretation of Rolle’s theorem
 - Lagrange’s mean value theorem
 - Cauchy’s mean value theorem
 - Taylor’s development of a function in a finite form with Lagrange’s form of remainder, Taylor’s theorem with Cauchy’s form of remainder
 - Taylor’s theorem with Schomilch and Roche’s from of remainder
 - Failure of Taylor’s and Maclaurin’s expansions in more than one variables.
Advanced Integral Calculus

- D.C. Agarwal

Contents

- **213-22** Advanced Integral Calculus

- **214-42** Calculus of Finite Differences & Numerical Analysis

Advanced Integral Calculus

- **Definite Integrals**
 - Definition
 - The definite integrals as the limit of a sum
 - Geometrical Interpretation
 - Properties of definite integrals
 - Method of differentiation under the sign of integration
 - Method of integration under the sign of integration
 - Principal and General Values of a definite integral

- **Euler's Integrals**
 - Definition (Beta and Gamma functions)
 - Symmetrical property of Beta function
 - To evaluate Beta function
 - To evaluate Gamma function
 - Transformation of Gamma function
 - Another form of Beta function
 - B (l, m) = \(\frac{\Gamma(l)/\Gamma(l+m)}{\Gamma(l+m)} \)
 - Other transformation of Beta functions

- **Integration of Multiple Integrals**
 - Double Integration (Cartesian co-ordinates)
 - Double Integration (Polar co-ordinates)
 - Multiple Integrals
 - Change of order of integration
 - Transformation of multiple integrals
 - Transformation of implicit functions
 - Transformation of the element of a surface
 - Beta and Gamma Functions

- **Integration with Unequal Intervals**
 - Lagrange's Method
 - Dirichlet's Theorem
 - Liouville's Extension of Dirichlet's Theorem
 - Volumes and Surfaces
 - Volume (Cartesian Co-ordinates)
 - Volume (Polar-Co-ordinates)
 - Area of the surface
 - Centre of Gravity
 - Moment of inertia
 - Convergence of Improper Integrals
 - Definition and kinds of improper integral
 - Convergence of improper integral of first kind
 - Necessary and sufficient condition for the convergence of \(\int_{a}^{\infty} f(x) \, dx \)
 - Tent for the convergence of \(\int_{a}^{\infty} f(x) \, dx \)

- **Calculus of Finite Differences & Numerical Analysis**

- **The Calculus of Finite Differences**
 - Finite Differences
 - Differences
 - Difference Formulae
 - Fundamental Theorem of Difference Calculus
 - The Difference Table
 - The Operator E
 - Properties of the Operators E and \(\Delta \)
 - Relation between Operator E of Finite Differences and Differential Coefficient D of Differential Calculus
 - One or More Missing Terms
 - Factorial Notation
 - Methods of Representing any Given Polynomial in Factorial Notation
 - Differences of Zero
 - Leibnitz's Rule
 - Effect of an Error in a Tabular Value
 - Stirling Numbers
 - Interpolation with Equal Intervals
 - The Following Interpolation Methods are Used
 - Sub-division of Intervals
 - Interpolation with Unequal Intervals
 - Divided Differences
 - Properties of Divided Differences
 - Newton's Formula for Unequal Intervals
 - Relation between Divided Differences and Ordinary Differences
 - Sheppard's Rule
 - Lagrange's Interpolation Formula for Unequal Intervals
 - Iterative Method
 - Hermite Interpolation Formula
 - Spline Interpolation
 - Central Difference Interpolation Formulae
 - Gause's Interpolation Formulae
 - Stirling's Formula
 - Bessel's Formula
 - Laplace-Everett Formula
 - Use of Various Interpolation Formulae
 - Numerical Differentiation
 - Direct Methods (using formula)
 - Maxima and Minima of a Tabulated Function
 - Numerical Integration
 - A General Quadrature Formula for Equidistant Ordinates
 - The Trapezoidal Rule
 - Simpson’s One-Third Rule
 - Simpson’s Three-Eight’s Rule
 - Boole’s Rule
 - Weddle’s Rule
 - Error in Quadrature Formulae
 - Cote’s Method
 - The Euler-Maclaurin’s Summation Formula
 - Stirling’s Formula for Approximation to Factorials
 - Method of Undetermined Coefficients
 - Integration Formula
 - Lozenge Diagrams For Quadrature Formulae
 - Romberg Integration
 - Hardy’s Formula
 - Numerical Double Integration
 - Gaussian Integration
 - Inverse Interpolation
 - Lagrange’s Method
 - Iteration or Successive Approximation Method
 - Method of Reversion of Series
 - Summation of Series
 - To Find the Sum to n Terms of a Series Whose general term is the first difference of another function
 - A Series with General Term of the Form \(u_n = \phi(x) + a_n \), where \(\phi(x) \) is Some Rational Integral Function of \(x \) of Degree \(n \)
 - Summation by Parts
 - To Prove that \(\sum_{x=1}^{n} u_x = \left[\Delta^{-1} u_x \right]_1^{n+1} \)
 - Relationship between \(\Delta \) and \(\Sigma \)
 - If

Contd...

Contents

...Contd: Calculus of Finite Differences & Numerical Analysis

If f(x) is Some Function of x and ϕ(E) is a Polynomial in E then Prove that ϕ(E) [a^n f(x)] = a^n ϕ [aE] [f(x)] • Difference Equations • Definition of a Difference Equation • Various Types of Linear Difference Equations • Existence and Uniqueness Theorem • Method of Variation of Parameters • Methods of Generating Functions • Non-homogeneous Linear Difference Equations with Variable Coefficients • Solution of Some Special Types of Difference Equations • Application of Difference Equations to Social Sciences • Matrix Method for Solving the System of two Simultaneous Linear Difference Equations • Cobweb Phenomenon • Application to Deflection of a Loaded String • Approximations and Errors in Computation • Numbers and their Accuracy • Errors and their Analysis • General Method of Finding Remainder Term • Absolute, Relative and Percentage Errors • Error in the Approximation of a Function • Error Committed in a Series Approximation • Order of Approximation • Remainder Term of Various Interpolation Formulae • Errors in Different Quadrature Formulae • Numerical Solutions of Ordinary Differential Equations of First and Second Order • Picard’s Method of Successive Approximations • Euler’s Method • Improved Euler’s Method • Modified Euler’s Method • Taylor’s Series Method • Runge’s Method • Runge Kutta Method • Predictor and Corrector Method • Milne’s Method • Adams-Bash Forth Method • General Approach to Predictors and Correctors • Simultaneous Differential Equation (first order) • Differential Equation of Second Order • Numerov’s Method • Boundary Value Problems • Error Analysis • Convergence of a Method • Stability Analysis • Solution of Algebraic and Transcendental Equations • Quotient & Remainder by Synthetic Division (Problem) • Nearly Equal Roots • Rate of Convergence of Newton’s Method When there exist Double Roots • Solution of Numerical Equations (Contd.) • Contractor of Horner’s Method • Solution of Simultaneous Linear Algebraic Equations • Different Methods of Obtaining the Solutions • Newton-Raphson Method for Solving Non-linear Simultaneous Equations • Matrix Inversion • Gauss Elimination Method • Gauss-Jordan Method • Triangularization Method • Crout’s Triangularization Method • Doolittle Method • Choleski’s Method • Iterative Method • Escalator Method for Matrix Inversion • Complex Matrices and Inversion • Eigen Values and Eigen Vectors • Iterative Method for Dominant Latent Root (or Power Series Method) • Evaluation of All the Eigen Values • Complex Eigen Values • Bounds for Eigen Values • Eigen Values of Real Symmetric Matrix • Jacobi’s Method • Given’s Method • House-Holder’s Method • Bernoulli and Euler Polynomials • The φ Polynomial • The β Polynomials • Bernoulli’s Polynomials and Bernoulli’s Numbers • Bernoulli’s Polynomials and Numbers of the First Order • Euler Polynomials and Euler Numbers • Properties of Euler’s Polynomials • Complementary Argument Theorem for Euler’s Polynomials • Euler’s Polynomials of Successive Orders • Euler Polynomials and Euler’s Number of First Order • Curve Fitting and Principle of Least Squares • Scatter Diagram • Curve Fitting • Method of Curve Fitting • Particular Cases • Change of Origin and Scale for Simplifying the Calculations • Most Plausible Solution of a System of Linear Equations • Fitting of the Curve of the Type y = ab^x and y = ax^b • Fitting of the Curve F(x) = k • Fitting of the Curve of Type xy = b + ax • Method of Group Averages • Laws Containing Three Constants • Method-Moments • Numerical Solution of Partial Differential Equations • Boundary-Value Problems • To Obtain Finite-Difference Approximations of Partial Derivatives • To Solve Laplace’s Equation (δ^2 u / δx^2) + (δ^2 u / δy^2) = 0 in the Bounded Region R with Boundary C • Parabolic Equations • Iterative Methods • Solution of Laplace’s Equation by Iteration (Leibmann’s Process) • Poisson’s Equation • Parabolic Equations [Solution by Bender Schmidt Recurrence Relation] • Derive the Crank Nicholson Difference Scheme for the Parabolic Equation ux = au, with Boundary Conditions as u(x, 0) = T_0, u(l, t) = T_1 and the Initial Condition as u(x, 0) = f(x) • Hyperbolic Equations • Solution of Elliptic Equations by Relaxation Method • Computer Fundamentals with Programming in C • Floating Points Numbers • Denormalized Number • Representation Error • Introduction to C Language.

215-50

Differential Equations (Gen)

- J.N. Sharma & R.K. Gupta

* Elementary Concepts * The complete solution of a differential equation of the nth order contains n-arbitrary independent constants * If y_1, y_2, ..., y_n are solutions of an equation then y = c_1y_1 + c_2y_2 + ... + c_ny_n is also a solution * Independence of constants of integration * Necc. and Suff. cond. for parameters c_1 and c_2 to be independent * Linear dependence and independence of solutions of equations * Necc. and Suff. cond. for n solutions to form a system of linearly independent integrals * Linear Equations of Second Order * Complete solution in terms of a known integral * To find particular integral of d^2y/dx^2 + P dy/dx + Qy = 0 * Removal of the first derivative * Transformation of the equation by changing the independent variable * Method of Variation of parameters * Methods of Operational Factors * Ordinary Simultaneous Differential Equations * Simultaneous linear diff. equations with constant coefficient * Simultaneous equations in a different form * Solution of simultaneous equations of the form dx/P = dy/Q = dz/R • Total Differential Equations (Pfaffian Differential Forms and Equations) • Pfaffian Differential Equations * Total Differential Equation for Pfaffian Differential Equation in three variables * Necc. and Suff. condition for integrability of single diff. equation P dx + Q dy + R dz = 0 * The condition for exactness • Methods for solving P dx + Q dy + R dz = 0 • Solution of P dx + Q dy + R dz = 0, when it is exact and homogeneous of degree n - 1 • Geometrical interpretation of the equation P dx + Q dy + R dz = 0. The locus of P dx + Q dy + R dz = 0 is orthogonal to the locus of dx/P = dy/Q = dz/R • The non-integrable single equation • Equations containing more than three variables • General method of solution of the equations containing more than three variables • Integration in Series • General method of solving a diff. eqn. • Case I. Roots of indicial equation equal • Case II. Roots of indicial equation, unequal and differing by quantity not an integer • Case III. Roots of indicial equation differing by an integer, making a coefficient of y derivative • Some cases where the methods fails • Series solution about a particular point • The particular Integral • Method of differentiation •

Contd...
...Contd: Differential Equations (Gen)

Picard’s Iteration Methods, Uniqueness and Existence Theorem • Picard’s Iteration Method • Existence and uniqueness of solutions • The Lipschitz condition • Existence theorem • Uniqueness theorem • Existence and uniqueness theorem • Theorem • Partial Differential Equations of the First Order • Derivative of partial differential equation • Definitions • Linear partial differential equation of order one • Lagrange’s Linear equation • Lagrange’s solution of the linear equation • Geometrical Interpretation of Lagrange’s linear equation • The linear equation with n independent variables • Special types of equations • Standard I. Equation of the form \(f(p, q) = 0 \) • Standard II. Equation of the form \(f(x, y) = 0 \) • Standard III. Equations of the form \(f(x, y) = f(y, p) \) • Standard IV. Equations of the form \(x = px + qy + f(p, q) \) • General Method of solution • Two independent Variables Charpit’s Method • Three or more independent Variables Jacobbi’s Methods • Partial Differential Equations with Constant Coefficients • Homogeneous linear equations with constant coefficients • Solution of the linear partial differential equations • To find the complementary function • When the auxiliary equation has equal (repeated) roots • The particular integral • Short Methods • Exceptional case when \(f(a, b) = 0 \) • General Methods • Non-homogeneous Linear equations with constant coefficients • Particular Integral • Equation reducible to homogeneous linear form • Partial Differential Equations of the Second Order • Monge’s Methods • Monge’s method of integrating \(Rr + Ss + Tt = V \) • Monge’s method of integrating \(Rr + Ss + Tt = V \) • Classification of Linear Partial Differential Equations • Classification of linear partial differential Equations of second order • Homogeneous Linear Equations with Variable Coefficients • Homogeneous linear Equations • Methods of Solution • Equations reducible to homogeneous form • Singular Solution • Discriminant • Extraneous Roots • Exact Differential Equations and Equations of other Particular Forms • Exact Diff. Eqn. (Definition) • Condition of exactness of a linear equation of order \(n \) • Integrating factor • Non-linear equation • An equation which does not contain \(y \) directly • An equation which does not contain \(x \) directly • An equation of the form \(\frac{d^n y}{dx^n} = f(x) \) • An equation of the form \(\frac{d^n y}{dx^n} = f(y) \) • An equation of the form \(\frac{d^n y}{dx^n} = f(x, y) \)

\[
\left(\frac{d^n y}{dx^n} \right)^2 + \left(\frac{d^{n-2} y}{dx^{n-2}} \right) x = 0
\]

• Equation in which order of the differential coefficients differ by unity • Numerical Integration • Simpson’s Rule • Numerical approximation • Legendre Polynomials • Legendre’s equation • Solution of Legendre’s Equation • Definition of \(P_n(x) \) and \(Q_n(x) \) • General solution of Legendre’s equation • To show that \(P_n(x) \) is the coefficient of \(x^n \) in the expansion in ascending powers of \(h \) of \((1 - 2hx + h^2)^{-1/2} \) • Laplace’s Definite Integrals for \(P_n(x) \) • Orthogonal properties of Legendre’s Polynomials • Recurrence formulae • Beltrami’s Result • Christoffel’s Expansion • Christoffel’s Summation Formulae • Rodrigues Formulae • Some Bounds on \(P_n(x) \) • Even and odd functions • Expansions of \(x^n \) in Legendre’s Polynomials • General Results • An important Case • Trigonometrical series for \(P_n(x) \) • Legendre’s Function of the Second Kind \(Q_n(x) \) • Legendre’s functions of the Second Kind • Neumann’s Integral • Recurrence formulae for \(Q_n(x) \) • Relation between \(P_n(x) \) and \(Q_n(x) \) • Christoffel’s Second Summation formula • Complete solution of Legendre’s equation (other form) • Bessel Functions • Bessel’s equation (Def.) • Solution of Bessel’s General Differential Equations • General solution of Bessel’s equation • Integration of Bessel’s equation in series for \(n = 0 \) • Definition of \(J_n(x) \) • Recurrence formulae for \(J_n(x) \) • Generating function for \(J_n(x) \) • Some Trigonometric expansion involving Bessel’s functions • A second solution of Bessel’s Equation • Hermite Polynomials • Hermite Differential Equation • Solution of Hermite Equation • Hermite’s Polynomials • Generating function • Other forms for Hermite Polynomials • To find first few Hermite Polynomials • Orthogonal properties of Hermite polynomials • Recc. Formula for Hermite Polynomials • Laguerre Polynomials • Laguerre’s Differential Equation • Solution of Laguerre Equation • Laguerre Polynomials • Generating function • Rodrigues formula • To find first few Laguerre Polynomials • Orthogonal Prop. of Laguerre Polynomials • Rec. formula for Laguerre Polynomials • Chebyshev Polynomials • Chebyshev’s Equation • Chebyshev’s Polynomials • To prove that \(T_n(x) \), \(U_n(x) \) are independent solutions of Chebyshev Equation • Important Relations for \(T_n(x) \) and \(U_n(x) \) • To find first few Chebyshev Polynomials • Generating function • Orthogonal properties of Chebyshev’s polynomials • Rec. formula for \(T_n(x) \) and \(U_n(x) \).
Contents

...Contd: Advanced Differential Equations

Case III. Roots of Indicial Equation Unequal Differing by an Integer, One Root Making a Coefficient of y Infinity (Frobenius Method) • Roots of Indicial Equation Equal [Frobenius Method] • Solution of Legendre’s Equation (In Decending Powers of x) • The Particular Integral • Some Cases where the Frobenius Method Fails • Beta and Gamma Functions • Euler's Integrals • Elementary Properties of Gamma Function • To Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ • Transformation of Gamma Function • Symmetric Property of Beta Function i.e., $B(m, n) = B(n, m)$ • Transformation of Beta Function • Relation between Beta and Gamma Functions $B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m + n)}$, $m > 0, n > 0$ • $\int_0^{\pi/2} \sin^n \theta \cos^m \theta \, d\theta = \frac{\Gamma\left(\frac{m + 1}{2}\right) \Gamma\left(\frac{n + 1}{2}\right)}{\Gamma\left(\frac{p + q + 2}{2}\right)}$ • Legendre Duplication Formula • To Prove that $\Gamma\left(\frac{1}{n}\right) \frac{\Gamma\left(\frac{2}{n}\right)}{\Gamma\left(\frac{3}{n}\right)} \cdots \frac{\Gamma\left(n - 1\right)}{\Gamma\left(n\right)} = \frac{(2\pi)^{n - 1/2}}{\sqrt{n}}$, where n is a positive integer • **Gauss Hypergeometric Equation** • The Pochhammer Symbol (Def.) • Identities Satisfied by Pochhammer Symbol $(\alpha)_n$ • Hypergeometric Series • Hypergeometric Function • Different Forms of Hypergeometric Function • Confluent Hypergeometric Function (Kummer Function) • General Hypergeometric Function • Symmetric Property of Hypergeometric Function • Particular Cases of Hypergeometric Series • Gauss's Hypergeometric Equation or Gauss’s Equation or Hypergeometric Equation • Solution of the Hypergeometric Equation • Derivatives of Hypergeometric Function • nth Derivative of Hypergeometric Function • Derivatives of Hypergeometric Function at $x = 0$ • Integral Formula for Hypergeometric Function • Kummer’s Theorem (For Hypergeometric Function) • Gauss’s Theorem • Vandermonde’s Theorem • Confluent Hypergeometric Equation (Or Kummer’s Equation) and its Solution • Series Solution of Confluent Hypergeometric Differential Equation near $x = 0$ when γ is not an Integer • Derivatives of Confluent Hypergeometric Function • Integral Formula for Confluent Hypergeometric Function $\Gamma_{1,1}(\alpha, \beta; x)$ • Kummer’s Theorem (For Confluent Hypergeometric Function) • Whittaker’s Confluent Hypergeometric Function • Contiguous Hypergeometric Functions • Theorem: Contiguity Relationship • **Hermite Polynomials** • Hermite Differential Equation • Solution of Hermite Differential Equation • Hermite Polynomial Generating Function for Hermite Polynomial $H_n(x)$ • Other Forms for the Hermite Polynomials • To Find First Few Hermite Polynomials • Orthogonal Properties of Hermite Polynomials • Recurrence Formulae for Hermite Polynomials • **Partial Differential Equations of the First Order (Origin of First Order Partial Differential Equations and Classification)** • Order and Degree of a Partial Differential Equation • Classification of First Order Partial Differential Equations into Linear, Semi-linear, Quasi-linear and Non-linear • Origin (Derivation) of First Order Partial Differential Equation • Some Definitions • Lagrange’s Linear Partial Differential Equation • Lagrange’s Solution of the Lagrange’s Linear Equation (Lagrange’s Method of Solving the Linear Partial Differential Equation of Order One Namely $P\partial_x + Q\partial_y = R$) • Working Method • The Linear Partial Differential Equation with n Independent Variables • Integral Surfaces Passing Through a Given Curve • Surface Orthogonal to a Given System of Surface • Compatible System of First Order Equations • **Non-linear Partial Differential Equations of First Order (Charpit’s and Jacobis Methods)** • Solution of Partial Differential Equations of First Order and any Degree in Some Standard Forms • Standard Form I: Equation Involving Only p and q and no x, y and z • Standard Form II: Equations Involving Only p, q & z • Standard Form III: Equations of the Form $f_1(x, p) = f_2(y, q)$ • Standard Form IV: Equations of the Form $x = px + qy + f(p, q)$ • Charpit’s Method: General Method of Solution of Non-linear Partial Differential Equation of Order One with Two Independent Variables • Jacobis Methods • Jacobis Method of Solving a Non-linear First Order Partial Differential Equation in Two Independent Variables • **Partial Differential Equations of the Second Order with Variable Coefficients (Origin and Classification)** • Origin (Derivation) of Second Order Partial Differential Equation • Special Types of Second Order Partial Differential Equations • Solutions of Equations under Given Conditions • Classification of Linear Partial Differential Equations of Second Order in n-Independent Variables • Classification of Linear Partial Differential Equation of Second Order in Two Independent Variables • **Linear Partial Differential Equations with Constant Coefficients** • Homogeneous and Non-homogeneous Linear Partial Differential Equations with Constant Coefficients • Solution of a Homogeneous Linear Partial Differential Equation with Constant Coefficients • Methods of Finding the Complementary Function (C.F.) of the Homogeneous Linear Partial Differential Equation with Constant Coefficients • Working Method of Finding C.F. of a Homogeneous Linear Partial Differential Equation with Constant Coefficients • Determination of the Particular Integral (P.I.) of a Homogeneous Linear Partial Differential Equation with Constant Coefficients • Short Method to Find P.I. when $\phi(x, y)$ is a Function of the form $x^m y^n$ or a Rational Integral Algebraic Function of x and y • Short Methods of Finding P.I. When $\phi(x, y)$ is a Function of $ax + by$ • General Method of Finding the P.I. of Homogeneous Linear Differential Equation with Constant Coefficients • Non-homogeneous Linear Differential Equations with Constant Coefficients • Methods of Finding the Complementary Function (C.F.) of Reducible Non-homogeneous Linear Partial Differential Equation with Constant Coefficients • Working Method of Finding C.F. of Reducible Non-homogeneous Linear Partial Differential Equation with Constant Coefficients • Determination of the Particular Integral (P.I.) of Non-homogeneous Linear Partial Differential Equation (Reducible or Irreducible) with Constant Coefficients • Solution of Linear Partial Differential Equation with Constant Coefficients under given Geometrical Conditions • **Reduction of Second Order Partial Differential Equation into Canonical Forms (Non-linear Equations of Second Order)** • Laplace Transformation (Canonical Forms) • Working Method of Reducing a Hyperbolic Equation to Canonical Form • Working Method of Reducing a Parabolic Equation to Canonical Form • Working Method of Reducing Elliptic Equation to Canonical Form • Wave Equations (By Method of Separation of Variables) • Wave Equation • Solution of One Dimensional Wave Equation by Using the Method of Separation of Variables • Solution of One Dimensional Wave Equation Under the Given Conditions • Some Important and Useful Differential Equations and Their Solutions • Solution of Two Dimensional Partial Differential Equations.
Wave Equation by the Method of Separation of Variables • Vibration of a Circular Membrane (Solution of Two Dimensional Wave Equation in Polar Coordinates) • Solution of Three Dimensional Wave Equation by the Method of Separation of Variables • Wave Equation in Cylindrical Coordinates • Solution of Wave Equation is Cylindrical Coordinates by the Method of Separation of Variables • Wave Equation in Spherical Coordinates • Solution of Wave Equation in Spherical Coordinates by the Method of Separation of Variables • Heat and Diffusion Equations (By Method of Separation of Variables) • One Dimensional Heat Equation • Heat Equation • Diffusion Equation • Solution of One Dimensional Heat Equation by Separation of Variables • Solution of One Dimensional Heat Equation under given Boundary Conditions • Solution of Two Dimensional Heat Equation in Cartesian Coordinates • Heat Equation in Plane Polar Coordinates • Solution of Heat Equation in Plane Polar Coordinates by Separation of Variables • Solution of Three Dimensional Heat Equation by the Method of Separation of Variables • Heat (Diffusion) Equation in Cylindrical Coordinates • Solution of Heat (Diffusion) Equation in Cylindrical Coordinates by the Method of Separation of Variables • Heat (Diffusion) Equation in Spherical Polar Coordinates • Solution of Heat (Diffusion) Equation in Spherical Polar Coordinates by the Method of Separation of Variables • Laplace Equations (By Method of Separation of Variables) • Laplace Equation • Solution of Two Dimensional Laplace’s (Harmonic) Equation by Using the Method of Separation of Variables • Solution of Two Dimensional Laplace’s Equation under the Given Conditions • Laplace Equation in Plane Polar Coordinates • Solution of Laplace Equation in Plane Polar Coordinates by Separation of Variables • Solution of Laplace’s Equation in Rectangular Cartesian Coordinates (x, y, z) by the Method of Separation of Variables • Laplace Equation in Cylindrical Coordinates • Solution of Laplace’s Equation in Cylindrical Coordinates by the Method of Separation of Variables • Laplace Equation in Spherical Coordinates • Solution of Laplace’s Equation in Spherical Coordinates by the Method of Separation of Variables.

Differential Geometry

216-40

Curves in Space (R^3) • Space curves • Path • Arc length • Tangent Line • Contract of nth order of a curve and surface • The osculating plane (or plane of curvature) • Tangent plane at any point of the surface f(x, y, z) = 0 • To find the osculating plane at a point of a space curve given by the intersection of the surface f(r) = 0, ψ(r) = 0 • The Principal normal and binormal • Definitions of curvature, Torsion and screw curvature • To find curvature and Torsion of curve • Helices • Intrinsic Equations (or Natural Equations) Fundamental Theorems for space curves • The circle of curvature • The osculating sphere (or sphere of curvature) • Behaviour of curve in the Neighbourhood of a point • Involute and Evolute • The spherical indicatrix or spherical images • Bertrand curves • Concept of a Surface and Fundamental Forms • Concept and Definition of a surface • Curvilinear equations of the curve on the surface • Parametric curves • Tangent plane and normal • Fundamental Forms • Two fundamental forms • First Fundamental form or Metric • Second Fundamental Form • Some Important Products • Derivatives of N, Weingarten Equations • Angle between parametric curves • Direction Coefficients • Angle between any two intersecting curves on the surface • Families of curves • Orthogonal Trajectories • Double Family of curves • Local Non-intrinsic Properties of a Surface, Curve on a Surface • Curvature of normal section • Principle Directions and Principal curvatures • Line of curvature • General surface of revolution • Joachimsthal’s Theorem • Dupin’s Indicatrix • Third Fundamental Form • Envelope, Edge of Regression and Developable • Envelope of system of surfaces whose equations involves two parameters • Ruled Surfaces (Developable and Skew) • Developable surface • Developables associated with space curves K = 0; for a developable surface • Monge’s Theorem • Conjugate directions • Asymptotic Lines • Fundamental coefficients and gaussian curvature for a ruled surface • The fundamental Equations of Surface Theory Gauss’s Formulae • The Fundamental Equations of Surface Theory (Tensur notation) • Parallel Surfaces • Whole curvature • Geodesic and Mapping of Surfaces • Geodesics • Differential equation of geodesics • Normal Property of geodesics • Geodesic curvature • Gauss Bonnet Theorem • Torsion of a geodesic • Bonnet’s theorem in relation to geodesics • Geodesics on F(x, y, z) = 0 • Geodesics parallel • Mapping of Surfaces • Some Definitions • Isometric lines and Isometric correspondence • Minding Theorem • Conformal mapping • Geodesic mapping • Tissot’s theorem • Dini’s theorem • Symbols and Abbreviations.

Dynamics of a Particle

217-16

Central Orbits • Central Forces, Elliptic, Hyperbolic and Parabolic Orbits, Apses and apsidal distances • Planetary Motion • Motion under inverse square law, Planetary Motion, Kepler’s Laws, Perihelion and Aphelion Points, Distributed Elliptic Motion • Anomalies, Planetary Motion (Continued) • Lambert’s Theorem • Tangential and Normal Acceleration, Conservation of Energy, Simple Pendulum and Constrained Motion • Motion in a smooth vertical circle, Motion on a smooth plane curve, Motion on a general curve, Motion on a circle, Elastic string • Motion on a smooth cycloid, Motion on a rough cycloid • Motion in a Resisting Medium and Motion when Mass Varies • Motion in a Straight Line in a Resisting Medium, Motion of Projectiles in a Resisting Medium • Revolving Curves • Moment of Inertia • D’Alembert’s Principle and Motion about a Fixed Axis.
Due to an oscillating flat plate distribution, vorticity alternate proof

\[
\text{Fluid Dynamics}
\]

- Basic Concepts
- Types of fluid
- Fluid properties
- Density
- Specific weight
- Specific volume
- Specific gravity
- Pressure
- Viscosity
- Temperature
- Thermal conductivity
- Specific heat
- Surface tension
- Vapour pressure
- Bulk modulus of Elasticity
- Kinematics of the Flow Field
- Lagrangian method
- Eulerian method
- Relationship between the Lagrangian and Eulerian method
- Velocity of a fluid particle at a point
- Local, convective and material derivatives
- Equation of continuity
- Equation of continuity (stream tube concept)
- Equation of continuity (cartesian coordinates)
- Equation of continuity (spherical polar coordinates)
- Equation of continuity (cylindrical polar coordinates)
- Equation of continuity (spherical coordinates)
- Equation of continuity (Lagrangian method)
- Equivalence of the two forms of the equation of continuity
- Velocity potential, irrotational flow
- Rotational flow
- Vorticity
- Vorticity vector, Vortex lines, Vortex tube
- Vortex filament
- Boundary Surface
- Conservation of Momentum
- Euler's equation of motion along a streamline
- Equation of motion of an inviscid fluid
- Equation of motion of an inviscid fluid (cartesian coordinates)
- Cauchy's integral
- Bernoulli's equation (Stream tube method)
- Conservative field of force
- Integration of Euler's equation
- Helmholtz equations
- Symmetrical forms of the equation of continuity
- Spherical symmetry
- Cylindrical symmetry
- Impulsive motion of a fluid
- Impulsive motion of a fluid (Cartesian coordinates)
- Energy equation
- Applications of Bernoulli's Theorem
- Flow over a protuberance in a closed channel
- Pitot tube
- Venturi tube
- Orifice plate
- Weirs
- Irrotational Motion
- General motion of a fluid element
- Motion of a fluid element (cartesian coordinates)
- Vorticity
- Body forces and surface forces
- Flow and circulation
- Stokes' theorem
- Kelvin's circulation theorem
- Connectivity
- Cyclic constants
- Irrotational motion in multiply-connected space
- Acyclic and Cyclic motion
- Green's theorem
- Deductions from Green's theorem
- Mean value of the velocity potential over a spherical surface
- Motion regarded as due to Sources and Sinks
- Liquid extending to infinity
- Kelvin's minimum energy theorem
- Motion in Two Dimensions
- Stream function (Plane polar coordinates)
- Physical interpretation of Stream function
- Complex potential and complex velocity
- Uniform flows
- Two dimensional Source and Sink
- Strength
- Complex potential of a source
- Two-dimensional doublet
- Complex potential of a doublet
- Images in two-dimension
- Image of a source with regard to a plane
- Image of a doublet with regard to a plane
- The circle theorem
- Image of a Source with regard to a circle
- Image of a doublet with regard to a circle
- Conformal representation
- Application to Fluid Dynamics
- General motion of a cylinder in two-dimensions
- Motion of a circular cylinder in a uniform stream
- Liquid Streaming past a fixed circular cylinder
- Two co-axial cylinders (Problem of initial motion)
- Circulation about a circular cylinder
- Blasius's theorem
- Streaming and Circulation for a fixed circular cylinder
- Equation of motion of a circular cylinder with circulation
- Elliptic coordinates
- Motion of an elliptic cylinder
- Streaming past a fixed elliptic cylinder
- Elliptic cylinder rotating in an infinite mass of liquid at rest at infinity
- Kinetic energy of rotating elliptic cylinder
- Kinetic energy when the liquid contained in a rotating elliptic cylinder
- Motion of a parabolic cylinder
- Velocity potential and stream function for a liquid streaming past a fixed parabolic cylinder
- The aerofoil
- Joukowski transformation
- Kutta-Joukowski's theorem
- D'Alambert's paradox
- Schwarz-Christoffel theorem
- Transformation of a semi-infinite strip
- Semi-infinite strip
- Infinite strip
- Flow into a Channel through a narrow slit in a wall
- Flow past a step in a deep stream
- Flow past a step in a channel
- Vortex Motion
- Properties of the vortex
- Strength of the vortex
- Rectilinear Vortices
- Velocity components
- Centre of vortices
- A case of two vortex filaments
- Stream function when the strength of the vortex filaments are equal
- Vortex pair
- Vortex doublet
- Vortex inside an infinite circular cylinder
- Vortex outside a circular cylinder
- An infinite single row of parallel rectilinear vortices of the same strength
- Two infinite rows of parallel rectilinear vortices
- Karman's vortex street
- Kirchoff vortex theorem
- Rectilinear vortex with circular section
- Rankine's combined vortex
- Rectilinear vortices with elliptic section
- Vortex sheets
- Routh theorem
- Waves
- Wave motion
- Mathematical representation of wave motion
- Standing or Stationary waves
- Classification of waves
- Surface waves
- Progressive waves on the surface of a canal
- Waves on a deep canal
- Energy of progressive wave
- Progressive waves reduced to a steady motion
- Standing or Stationary waves
- Energy of Stationary waves
- Waves at the common surface of two liquids
- Waves at an interface with upper surface free
- Group velocity
- Rate of transmission of energy
- Long waves
- Energy of a long wave
- Long waves at the common surface of two liquids bounded above and below by two fixed horizontal planes
- Irrotational Motion in Three Dimensions
- Butler's sphere theorem
- Solution of Laplace equation
- Motion of a sphere in an infinite mass of liquid at rest at infinity
- Ideal flow round a sphere
- Liquid streaming past a fixed sphere
- Concentric spheres
- Equation of motion of a sphere
- Three dimensional source and sink
- Three dimensional doublet
- Image of a source with regard to a sphere
- Motion of a liquid inside a rotating ellipsoidal shell
- Motion of an ellipsoid in an infinite mass of liquid
- Values of Stoke's stream function
- Values of Stoke's stream function
- A simple source on the X-axis
- A uniform line source along the axis
- A doublet along the axis
- Solid of revolution along their axes in an infinite mass of liquid
- Viscous Fluid Flow
- Stress analysis at a point
- State of a stress at a point
- Symmetry of stress tensor
- Alternative proof
- Stress in a fluid at rest
- Stress in a fluid in motion
- Transformation of stress-components
- Tensor character of stress matrix
- Stress quadratic
- Orthogonal principal directions
- Principal stresses and Principal directions
- Strain analysis
- Rate of Strain quadratic
- Alternative proof
- Transformation of the rates of strain
- Relation between stress and rate of strain
- Navier-Stokes equation of motion of a viscous fluid (Cartesian coordinates)
- Limitations of the Navier-Stokes equation
- Equation of energy
- Dissipation of energy
- Vorticity and Circulation in viscous fluids
- Diffusion of vorticity
- The equation of state
- Dimensional Analysis
- Reynolds number
- Buckingham's theorem
- Similitude
- Froude number
- Pressure coefficient (Euler’s number)
- Match number
- Reynolds number
- Grashof number
- Prandtl Number
- Peclet number
- Exact Solutions of the Navier-Stoke's Equation
- Laminar flow through parallel plates
- Plane couette flow
- Generalised plane couette flow
- Plane Poiseuille flow
- Flow between parallel plates (Temperature distribution)
- Plane couette flow
- Generalised Plane couette flow
- Plane Poiseuille flow
- Hagen-Poiseuille flow
- Flow through a circular pipe
- Steady flow between co-axial circular pipes
- Steady flow in pipes of elliptic cross-section
- Steady flow in pipes of equaliteral triangular section
- Steady flow in pipes of rectangular sections
- Hagen-Poiseuille flow in a circular pipe (temperature distribution)
- Laminar flow between concentric rotating cylinders
- Temperature distribution
- Steady motion of a viscous fluid due to a slowly rotating sphere
- Flow in convergent and divergent channels
- Unsteady motion of a flat plate
- Flow due to an oscillating flat plate
- Pulsatile flow between parallel surfaces
- Unsteady flow of viscous incompressible fluid between two parallel plates
- Diffusion of a...
vortex filament • Low Reynolds number solution • Solution of the Navier-Stokes equation at low Reynolds number • Slow flow past a sphere • Flow past a sphere (Aliter) • Flow past a circular cylinder • Laminar Boundary-Layer Flow • Two dimensional boundary layer equations for flow over a plane wall • Boundary layer flow along a flat plate • Boundary layer thickness • Properties of the boundary layer equations • Boundary layer flow past a wedge • Potential flow past a wedge • Potential flow around a corner • Flow in a convergent channel • Momentum integral equation for the boundary layer • Momentum and energy integral equation for the boundary layer (Aliter) • Application of the Integral Equation to boundary layers Von Karman’s Pohlhausen method • Discontinuous Motion • Properties of the free stream lines • Flow in jets and currents • Motion of two impinging jets • Direct impact of four equal jets • Borda’s Mouthpiece • Jet of a liquid through a slit • Impact of a stream on a lamina • Lubrication Theory • The generalised Reynolds equation • Flow between parallel walls • The Real bearing • One-dimensional journal bearings (Ininitely long bearing) • Ininitely short bearing • One-dimensional Thrust bearing • Step bearing • Appendix: Orthogonal curvilinear coordinate.
Contents

...Contd: Functions of a Complex Variable

Transformations ● Elliptic, Hyperbolic and Parabolic Transformations ● Some Special Bilinear Transformations ● More about Conformal Mappings ● The Transformation \(w = z^n \) ● The Transformation \(w = z^2 \) ● The Inverse Transformation \(z = \sqrt{w} \) ● The Exponential Transformation \(w = e^z \) ● The Logarithmic Transformation \(w = \log z \) ● The Trigonometrical Transformations ● The Transformation \(w = \tan^2 \left(\frac{\pi}{4} z \right) \) ● The Transformation \(w = \frac{1}{2} \left(z + \frac{1}{z} \right) \) ● Some General Techniques of Conformal Mapping ● Complex Integration ● Complex Line Integrals ● Reduction of Complex Integrals to Real Integrals ● Some Properties of Complex Integrals ● An Estimation of a Complex Integral ● Line Integrals as Functions of Arcs ● Cauchy’s Fundamental Theorem ● Second Proof of Cauchy-Goursat Theorem ● A Third proof of Cauchy-Goursat Theorem ● Cauchy’s Integral Formula ● Poisson’s Integral Formula of a Circle ● Derivative of an Analytic Function ● Higher Order Derivatives ● Morera’s Theorem ● Indefinite Integrals or Primitives ● Cauchy’s Inequality ● Liouville’s Theorem ● Expansion of Analytic Functions as Power Series : Taylor and Laurent’s Theorems ● The Zeros of an Analytic Function ● Different Types of Singularities ● Some Theorems on Poles and Other Singularities ● The Point at Infinity ● Characterization of Rotational Functions ● Maximum Modulus Principle ● The Excess of Number of Zeros Over Number of Poles of a Meromorphic Function ● Rouche’s Theorem ● Schwarz Lemma ● Inverse Function Theorem ● Fundamental Theorem of Algebra ● Analytic Continuation ● Power Series Method of Analytic Continuation ● Schwartz’s Reflection Principle ● Calculus of Residues ● Residue at Simple Pole ● Residue at a Pole of Order Greater than Unity ● Residue at Infinity ● Cauchy’s Residue Theorem ● Evaluation of Definite Integrals ● Integration Round the Unit Circle ● Evaluation of the Integrals \(\int_{-\infty}^{\infty} f(x) \, dx \) ● Jordan’s Inequality ● Jordan’s Lemma ● Evaluation of the Integrals of the form \(\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin mx \, dx \) etc. ● Case of the Poles on the Real Axis ● Integrals of may Values

Functions ● Rectangular and Other Contours ● Expansion of Meormorphic Functions ● Uniform Convergence and Infinite Products ● Uniform Convergence of a Sequence ● General Principle of Uniform Convergence ● Uniform Convergence of a Series ● Weierstrass’s M-test ● Hardy’s Test ● Continuity of the Sum Function ● Term by Term Integration ● Analyticity of the Sum Function of a Series, Term by Term Differentiation ● Hurwitz Theorem ● Uniform Convergence of Power Series ● A note on Absolute and Uniform Convergence ● Infinite Products ● Three Important Theorems on Infinite Products ● The Absolute Convergence of Infinite Products ● Uniform Convergence of Infinite Products ● Entire Functions ● Mittag Leffler’s Theorem ● The Weierstrass Factorization Theorem ● Canonical Products ● The Jenson and Poisson-Jenson Formulas ● Growth, Order and Convergence Exponents of Entire Functions ● Hadmard’s Factorization Theorem ● The Gamma Function.

221-19

Complex Analysis

--A.R. Vasishtha, Vipin Vasishtha & A.K. Vasishtha

● Complex Numbers and their Geometrical Representation ● Complex Numbers ● Properties of the Addition Of Complex Numbers ● Properties Of The Multiplication Of Complex Numbers ● Difference Of Two Complex numbers ● Division In C ● Modulus Of A Complex Number ● Conjugate Of A Complex Number ● Modulus-argument Form Or Polar Standard Form Or Trigonometric Form Of A Complex Number ● The Geometrical Representation Of Complex Numbers ● The Points On The Argand Plane Representing The Sum, Difference, Product And Division Of Two Complex Numbers ● More Properties Of Moduli And Arguments ● Theorem: The Order Relations Greater Than Or Less Than Do Not Apply To Complex Numbers ● Some Important Results About Complex Numbers ● Integral And Rational Powers Of A Complex Number ● Geometrical Applications Of Complex Number ● Complex Equation Of A Straight Line In The Complex Plane ● Equation Of A Circle In The Complex Plane ● The Spherical Representation Of Complex Numbers And Stereographic Projection ● Analytic Functions ● Curves In The Argand Plane ● Functions Of A Complex Variable ● Neighbourhood Of A Point ● Limits And Continuity ● Differentiability ● Analytic, Holomorphic And Regular Functions ● The Necessary And Sufficient Conditions For \(f(z) \) To Be Analytic ● Polar Form Of Cauchy-Riemann Equations ● Derivative of \(w = f(z) \) In Polar Form ● Orthogonal System ● Harmonic Function ● Methods Of Constructing A Regular function (Milne-Thomson’s Method) ● Multiple Valued Functions ● Conformal Mappings ● Mappings Or Transformations ● Jacobian Of A Transformation ● Conformal Mapping ● Necessary Conditions for \(w = f(z) \) To Represent A Conformal Mapping ● Sufficient Conditions For \(w = f(z) \) To Represent A Conformal Mapping ● Superficial Magnification ● The Circle ● Inverse Points With Respect To A Circle ● Some Elementary Transformations ● Linear Transformation ● Bilinear Or Linear Fractional Transformation ● Critical Points ● Resultant Or Product Of Two Bilinear Transformations ● Bilinear Transformation As The Resultant Of Elementary Bilinear Transformations With Simple Geometric Properties ● Bilinear Transformation As The Resultant Of An Even Number Of Inversions ● The Linear Group ● Equation Of A Circle Through Three Given Points ● Cross Ratio ● Preservance Of Cross-Ratio Under Bilinear Transformation ● To Find The Bilinear Transformation Which Transforms Three Distinct Points \(z_1, z_2, z_3 \) Of z-Plane Respectively Into Three Specified Points \(w_1, w_2, w_3 \) Of w-Plane ● Two Important Families Of Circles ● Preservance Of the Family Of Circles And Straight Lines Under Bilinear Transformations ● Fixed Points Or Invariant Points Of A Bilinear Transformation ● Normal Form Of A Bilinear Transformation ● Elliptic, Hyperbolic And Parabolic Transformations ● Some Special Bilinear Transformations ● Taylor’s Series ● More about Conformal Mappings (Some Special Transformations) ● The Transformation \(w = Z^n \) (Where n Is A Positive Integer) ● The Transformation \(w = z^2 \) ● The Inverse Transformation \(z = \sqrt{w} \) ●
...Contd: Complex Analysis

Hydrodynamics

- Shanti Swarup

222-18

Infinite Series & Products

- Sequences and Limits
- Sequences of real numbers
- Bounded sequences
- Monotonic sequences
- Series
- Limits of a sequence
- Convergence of a sequence
- Cauchy’s general Principle of Convergence of a Series
- Upper and Lower bounds and limits
- Convergence of monotonic sequences
- Theorems on limits
- Cauchy’s first theorem on limits
- Cauchy’s second theorem on limits
- Theorems on limits of quotients
- Hardy’s test
- Cesàro summability
- Abel’s test
- Dirichlet’s test
- Raabe’s test
- de Moivre’s test
- De Morgan’s test
- Bertrand’s test
- Absolute and Conditional Convergence
- General Principle of Convergence
- Alternating Series
- Absolute and non-negative convergence
- Rearrangement of terms of an absolutely convergent series
- Inversion of Parentheses
- Removal of brackets
- Rearrangement of terms of a conditionally convergent series
- Pringsheim’s Method
- Multiplication of infinite series
- Mertens’s theorem
- Abel’s theorem
- Failure of multiplication rule
- Tests for absolute convergence
- Abel’s inequality
- Dirichlet’s test
- Abel’s test
- Eilers constant
- The integral test for series of positive terms
- Convergence of Infinite Products
- Convergence and divergence of infinite products
- General principle of convergence of infinite products
- Weierstrass’s inequalities
- Absolutely Convergent Series
- Convergence of infinite products
- Rearrangement of factors
- Semi-convergent infinite products
- Complex factors
- Uniform Convergence of Sequences and Series of Functions
- Uniform Convergence
- Cauchy’s general principle of uniform convergence
- Dini’s criterion of uniform convergence of a sequence of continuous functions
- Tests for uniform convergence
- M-test
- Weierstrass’s M-test
- Abel’s test
- Dirichlet’s test
- Uniform convergence and continuity
- Uniform convergence and integration
- Uniform Convergence and Differentiation
- Uniform convergence of infinite products
- The...
...Contd: Infinite Series & Products
Weierstrass's Approximation Theorem • Arzelà's Theorem on Equicontinuous Families • Power Series • Definition and some elementary theorems • Radius of convergence • Uniform convergence of power series • Properties of power series • Abel's summability • Abel’s theorem • Tauber’s theorem • Expansions of Trigonometrical Functions as Infinite Series and Products • Infinite Product for sin x and cos x • Convergence of Infinite Products for sin x and cos x • Weierstrass’s Formula for sine as an infinite product • Series for sec x.

224-34

Integral Transforms (Transform Calculus)
~A.R. Vasishtha & R.K. Gupta

- The Laplace Transform • Integral Transform (Definition) • Laplace Transform (Definition) • Linearity Property of Laplace Transform • Piece-wise (or sectionally) continuous functions • Existence of Laplace Transform • Functions of Exponential order • A function of Class A • Table (Laplace Transforms of some elementary functions) • First translation or shifting theorem • Second translation or shifting theorem • Change of scale property • Laplace transform of the derivative of F(t) • Laplace transform of nth order derivative of F(t) • Initial value theorem • Final value theorem • Laplace transform of Integrals • Multiplication by t • Multiplication by tⁿ • Division by t • Evaluation of Integrals • Periodic Functions • Some Special functions • Table Laplace Transform Theorems • The Inverse Laplace Transform • Null Function (Definition) • Lerch's Theorem • Linearity Property • Table of Inverse Laplace transforms • First translation or shifting theorem • Second translation or shifting theorem • Change of scale property • Use of Partial Fractions • Inverse Laplace transform of derivatives • Inverse Laplace transform of Integrals • Multiplication by powers of P • Division by powers of P • Convolution (Definition) • Convolution theorem • Heaviside’s expansion formula or formula • The Beta function • The Complex Inversion formula • Table of Inverse Laplace Transform theorems • Application of Laplace Transform to Solutions of Differential Equations • Solution of ordinary Differential Equations with constant coefficients • Solution of ordinary Differential Equations with variable coefficients • Solution of Simultaneous Ordinary Differential Equations • Solution of partial Differential Equations • Applications to Electrical circuits • Applications to Mechanics • Application of Laplace Transform to Integral Equations • Definitions • Applications of L.T. to Integral Equations • Applications of Laplace Transforms in Initial and Boundary Value Problems • A Boundary Value Problem • Heat Conduction Equation • Wave Equation • Laplace Equation • Applications to Beams • Miscellaneous Exercises • Fourier Transforms • Dirichlet’s Conditions • Fourier Series • Fourier Integral formula • Fourier Transform or Complex Fourier Transform • Inversion Theorem for Complex Fourier transform • Fourier sine transform • Inversion formula for Fourier sine transform • Fourier cosine transform • Inversion formula for Fourier cosine transform • Linearity property of Fourier transform • Change of Scale property • Shifting Property • Modulation Theorem • Multiple Fourier Transforms • Convolution • The Convolution or Falting theorem for Fourier transforms • Parseval’s Identity for Fourier Transforms • Relationship between Fourier and Laplace Transforms • Fourier transforms of the derivatives of a function • Problems related to integral equations • Finite Fourier Transforms • Finite Fourier sine transforms • Inversion formula for sine transforms • Finite Fourier cosine transform • Inversion formula for cosine transform • Multiple finite Fourier transforms • Operational properties of finite Fourier sine transforms • Theorem I • Theorem II • Operational properties of finite Fourier cosine transforms • Theorem III • Theorem IV • Combined properties of finite Fourier sine and cosine transforms • Convolution • Applications of Fourier Transforms in Initial and Boundary Value Problems • Application of infinite Fourier transforms • Choice of infinite sine or cosine transforms • Application of finite Fourier transforms • Finite Fourier transforms of partial derivatives • Choice of finite sine or cosine transforms • Hankel Transforms • Hankel Transform (Def.) • Inversion formula for the Hankel transform • Some Important Results for Bessel Functions • Linearity Property • Hankel Transform of the Derivatives of a function • Hankel transform of \[\frac{d^2 f}{dx^2} + \frac{1}{dx} \frac{df}{dx} - \frac{n^2}{x^2} f \] • Parseval’s Theorem • The Finite Hankel Transforms • Finite Hankel Transform (Def.) • Another form of Hankel Transform • Hankel Transform of \[\frac{df}{dx} \]

Hankel Transform of \[\frac{d^2 f}{dx^2} + \frac{1}{dx} \frac{df}{dx} \]
where p is the root of the equation \[J_p (ap) = 0 \] • Hankel Transform of \[\frac{d^2 f}{dx^2} + \frac{1}{dx} \frac{df}{dx} - \frac{n^2}{x^2} f \] (x) where p is the root of the equation \[J_p (ap) = 0 \] • Applications of Hankel Transform in Initial and Boundary Value Problems • Mellin Transform (Def.) • The Mellin inversion theorem • Linearity property • Some elementary properties of Mellin transform • Mellin transform of derivatives • Mellin transform of integrals • Convolution (or Falting) theorem for Mellin transform.

225-48

Linear Algebra (Finite Dimensional Vector Spaces)
~J.N. Sharma, A.R. Vasishtha & A.K. Vasishtha

- Vector Spaces • Binary operation on a set • Group Definition • Field • Vector space • General properties of vector spaces • Vector subspaces • Algebra of subspaces • Linear combination of vectors, Linear span of a set • Linear sum of two subspaces • Linear combination of vectors, Linear span of a set • Linear sum of two subspaces • Linear dependence and linear independence of vectors • Basis of a vector space • Finite dimensional vector spaces • Dimension of a finitely generated vector spaces • Dimension of subspace • Homomorphism of vector spaces of Linear Transformation •

Contd...
Linear Difference Equations

Introduction

Applications of Difference Equations
Study of Period of Analysis
Verbal Learning Experiment
Panel Surveys
Social Sciences
Psychology
Physiology
Economic Dynamics
The Calculus of Finite Differences
Definitions
Operators
Linear Operators
Algebra of Operators
First Differences (or Forward Differences) of y
Forward Difference Operator Δ
Backward Difference Operator \(\Delta^{-1} \)
Central Difference Operator \(\delta \)
Second and Higher Order Differences
Identity Operator
Second and Higher Order backward Differences
The Transition or Shifting Operator E
Properties of Δ and E
Equivalence of Operators
Some Important Theorems of Δ and E
To Express any Functions In terms of Leading Term and the Leading Differences of Difference Table
Leibnitz’s Rule for Differences
Factorial Function
The Difference of Functional Factor
Method of Representing any Polynomial in Factorial Notation
Indefinite Summation, The operator \(\Delta^{-1} \)

Theorem. To prove \(\Delta^{-1}y = Y + t(x) \) i.e To find \(\Delta^{-1} x^{1/n} \) i.e To prove \(\Delta^{-1} c^x = \frac{c^x}{c^x - 1} + t(x) \) i.e To prove \(\Delta^{-1}[V(y).ΔU(x)] =U(x).V(x) - Δ^{-1}[EU(x)] \)

\(\Delta V(x) \) i.e Analogies between the Difference and Differential Calculus
Difference Equations
To Write a Difference Equation as a Relation among the Value of y
Linear Difference Equation
Order of a Linear Difference Equation
Solution of a Difference Equation
An Existence and Uniqueness Theorem
Solution of the Equation \(y_{n+1} = Ay_n + C \)
Theorem
Sequences
Definitions
Solution as Sequences
Theorem A Probability Model for Learning
Approximating a Differential Equation by a Difference Equation
Linear Difference Equations with Constant Coefficients
Basic Definitions
Theorem 1
Finite Linear Combination of Solutions
Theorem 2
Theorem 3
Fundamental Set of Solutions (or Linearly Independent Solns.)
Theorem
General Solution of the Hom. Diff. Equation of Order 2
General Solution of the Hom. Diff. Equation of Order n
Particular Solution of the Complete Diff. Equation
Method of Undertermined Coefficients to Find the Particular Solution
Special operator Method to Find the Particular Solution
Method of Variation of Parameters
Solution of Simultaneous Difference Equations
Matrix Method for Solving a system of linear diff. equations
Working Method for Solving a Second Order Homo. Difference Equation with Constants Coefficients by Matrix Method
Examples from the Social Sciences
The First Order Equations. Cobweb Cycles and Generating Functions
Solution of \(y_{n+1} - b_ny_n = f_n \)
Cobweb Phenomenon (or Cobweb Cycles)
Generating Functions
Some Special Generating Functions
The Linearity Property of the Generating Function Transformation
Generating Function Method for Solving a Linear Difference Equation.
...Contd: Integral Equations

then for a Proper Choice of $\phi_0 \phi(x) = D(x, \xi, \lambda_0)$ is a Continuous Solution of the Homogeneous Integral Equation.

Fundamental Functions, Integral Equations with Degenerate Kernels, Hilbert Schmidt Theory, All Iterated Kernels of a Symmetric Kernel are also Symmetric, Orthogonality of Fundamental Functions, Eigen Values of Symmetric Kernel are Real, Real Characteristic Constants, Expansion of a Symmetric Kernel in Eigen Functions, Symmetric Kernels with a Finite Number of Eigen Values, Symmetric Kernels with a Finite Eigen Values $\lambda_{m+1} \lambda_{m+2}$, etc.

228-29

Linear Programming

- R.K. Gupta

- Mathematical Preliminaries, Matrices and Determinants, Operations of Matrix and Addition and Multiplication, Sub- matrix, Minor of order k, Determinant, Important properties of determinants, Minors, Cofactors, Rank of a Matrix, Adjoint of a Matrix, Singular and Non-singular Matrices, Inverse of a matrix, Vectors and Vector Spaces, Definitions, Euclidean space, Linear Dependence and Independence of vectors, Linear Combination (L.C.) of vectors, Spanning Set, Basis Set, Some useful Theorems of Linear Algebra, Simultaneous Linear Equations, Linear Programming Problems, Formulation and Graphical Solution, General Linear Programming problems, Mathematical formulation of a L.P.P., Basic Solution (B.S.), An Important Theorem, Some Important Theorems, Solution of a linear programming problem, Geometrical (or graphical) method for the solution of a L.P.P., Convex Sets and their Properties, Definitions, Convex Combination, Some Important Theorems, Simplex Method, Slack and Surplus Variables, Some Definitions and Notations, Fundamental Theorem of Linear Programming, To obtain B.F.S. from F.S., To Determine Improved B.F.S., Unbounded Solutions, Optimality Conditions, Alternative Optimal Solutions, Inconsistency and Redundancy in Constraint Equations, To determine starting B.F.S., Computational procedure of the simplex method for solution of a maximization L.P.P., Artificial Variables Technique, L.P.P. with unrestricted variables, Sol. of system of simultaneous linear eqs. by simplex method, To compute the inverse of a matrix for which one column is different from that of a matrix whose inverse is known, Inverse of a matrix by Simplex Method, Resolution of Degeneracy, Conditions for the occurrence of degeneracy in a L.P.P., Method of Resolving Degeneracy, Charnes’ Perturbation Method, Selection of the outgoing (departing) vector, Computational Procedure, Generalized Simplex Method, Revised Simplex Method, Revised Simplex Method in standard Form I (Formulation of a L.P.P. in the form of revised simplex), Notations for Standard form I, To find the inverse of the Basis and the Basic solution in standard Form I, Computational Procedure of the revised Simplex Method in Standard Form I, Revised Simplex Method in Standard Form II, Notations, Basis and its Inverse in Standard form II, Computational Procedure of the Revised Simplex Method in Standard Form II, Advantages and Disadvantages of Revised Simplex Method over the original Simplex Method, Duality, Symmetric Dual Problem, Unsymmetric Dual Problem, The dual of a mixed system, Standard form of the primal, Theorem Dual of the dual of a given primal is the primal itself, Fundamental Properties of Dual Problems, Complementary Slackness Theorem, Correspondence between primal and dual, To read the solution of the dual from the final Simplex table of the primal and vice versa, Dual Simplex Algorithm, Derivation of the Dual Simplex Algorithm, Initial solution for Dual Simplex Algorithm, Advantage of Dual Simplex Algorithm, Computational Procedure of the Dual Simplex Algorithm, Primal Dual Algorithm, To determine the

Contd...
initial Dual Solution ● To determine the Restricted Primal Problem ● To find the Entering and leaving vectors ● Method to obtain New Dual Solution ● Test of optimality ● Computational Procedure of Primal-Dual Algorithm ● Sensitivity Analysis ● Variation of a price vector c ● Variation in the requirement vector b ● Variation in the component a_{ij} of the coefficient matrix A ● Addition of a new variable to the problem ● Addition of a new constraint to the problem ● Parametric Linear Programming ● Linear Variation in c ● Linear Variation in b ● Integer Programming ● Importance (or need) of I.P.P. ● Solution of I.P.P. ● Gomory’s all I.P.P. method ● Construction of Gomory’s constraint ● Computation procedure for the solution of all I.P.P. by Gomory method ● The Branch and Bound Technique ● Branch and Bound Algorithm ● Assignment Problem ● Important theorems ● Method for solving an assignment Problem (Assignment algorithm) ● Unbalanced Assignment Problem ● Transportation Problem ● Difference between a transportation and an Assignment problem ● Few Important definitions ● Solution of transportation problem ● To find an Initial feasible solution ● Optimality Test ● Theorem ● Computational Procedure of optimality test ● Transportation Algorithm or Modi Method ● Degeneracy in Transportation Problems ● Unbalanced Transportation Problem ● Game Theory (Competitive Strategies) ● Competitive Games ● Finite or Infinite Games ● Zero sum game ● Two person zero sum (or Rectangular) Games ● Pay-off matrix ● Strategy ● Solution of a Game ● Minimax and minimax criterion of optimality ● Solution of a rectangular game with saddle point ● Solution of a rectangular game in terms of mixed strategies ● Important properties of optimal mixed strategies ● Solution of 2×2 games without saddle point ● Dominance property ● Graphical method for solution of $2 \times n$ and $2 \times m$ games ● Algebraic method for Approximate Solution ● Equivalence of the rectangular matrix game and linear Programming ● Fundamental theorem of Game theory (Minimax Theorem) ● Solution of a rectangular game by simplex method ● Summary of methods for solving the rectangular games ● Minimax and Maximin of a function of several variables ● Saddle points of a function of several variables ● Necessary and sufficient condition for a function $E(x, y)$ to possess a saddle point.
...Contd: Mathematical Analysis-II

Morgan and Bertrand's Test
- An alternative to Bertrand's Test
- Summary of Tests
- General Series
- General Principle of Convergence
- Alternating series
- Absolute and non-absolute Convergence
- Re-arrangement of Terms of an Absolutely Convergent Series
- Inversion of parentheses
- Removal of Brackets
- Re-arrangement of terms of a Conditionality Convergent Series
- Pringsheim’s Method
- Multiplication of Infinite Series
- Merten’s Theorem
- Abel’s Theorem
- Failure of Multiplication Rule
- Test for Absolute Convergence
- Abel’s Inequality
- Dirichlet’s Test
- Abel's Test
- Euler’s Constant
- Integral Test for Series of Positive Terms
- Open and Closed Sets of Real Numbers
- Neighbourhoods
- Open Sets
- The Structure of Open Sets in R
- Closed Sets
- Accumulation Points, Adherent Points
- Closed Sets and Accumulation Points
- Closure
- Interior, Exterior and Boundary of a Set
- Dense, non-dense, perfect and isolated Sets
- Covering Theorems
- Compactness
- Structure of Closed Sets on the real line
- Cantor’s Ternary Set
- Limits and Continuity
- Definitions
- Limits
- Algebra of Limits
- Continuity
- The four functional limits at a point
- Kinds of discontinuities
- Saltus
- Theorems on continuity
- Theorems on discontinuous functions
- Pointwise discontinuous functions
- Uniform continuity
- Absolute Continuity
- Continuity of the inverse function
- Some more examples on continuity
- Differentiability
- Derivative at a point
- Progressive and regressive derivatives
- Differentiability in [a,b]
- Derivative of a function
- Meaning of sign of derivative
- Geometrical meaning of a derivative
- A necessary condition for the existence of a finite derivative
- Algebra of derivatives
- The chain rule
- Derivative of an inverse function
- Darboux Property
- Rolle’s Theorem
- Lagrange’s Mean value theorem
- Deductions from mean value theorem
- Cauchy’s mean value theorem
- Taylor's development of a function in a finite form with Lagrange’s form of reminder
- Taylor’s theorem with Cauchy’s form of reminder

The Riemann Integral
- Sets of measure zero
- Partitions and Riemann Sums
- Upper and Lower R-integrals
- R-integrability
- Riemann’s necessary and sufficient conditions for R-integrability
- Some classes of integrable Calculu
- Mean Value Theorems
- Integration by Substitution
- Integration by Parts
- The integral as a limit
- The Riemann Stieltjes Integral
- A generalization of the Riemann Integral
- Partitions
- Lower and upper Riemann-Stieltjes sums
- The lower and upper Riemann-Stieltjes Integrals
- The Riemann Stieltjes Integral
- The QS-integrals as a limit of sums
- Some classes of RS-integrable functions
- A relation between R-integral and RS-integral
- Integration of vector valued function
- Some more theorems on Integration
- Convergence of Improper Integrals
- Improper Integral
- Integral with infinite limits
- Test for the convergence of \(\int_a^b f(x) \, dx \)
- Comparison Test
- To test the convergence of \(\int_a^b \frac{dx}{x^2} \)
- The \(\mu \)-test
- Abel's test
- Dirichlet's test
- Absolute convergence
- Test for the convergence of improper integral \(\int_a^b f(x) \, dx \)
- Comparison test
- To test the convergence of \(\int_a^b \frac{dx}{(x-a)^n} \)
- The \(\mu \)-test
- Abel's test

Dirichlet's test
- Operation with improper integrals
- Metric Spaces
- Euclidean spaces
- Metric spaces
- Neighbourhoods
- Limit points
- Open and closed sets
- Connectedness
- Compactness
- Completeness
- Cantor's Intersection Theorem
- Baire category Theorem
- Completeness and Contracting Mapping
- Limits and Continuity
- Functions of Several Variables
- Continuity of Functions of two Variables
- Partial Derivatives
- Interchange of the Order of Differentiation
- Differentiability of two variables
- Composite Functions
- Linear transformations
- Matrices
- Differentiation
- Partial Differentiation
- The Inverse Function Theorem
- The Implicit Function Theorem
- Jacobians
- Definition
- Case of Functions of Functions
- Jacobian of Implicit Functions
- Necessary and sufficient condition for a Jacobian to vanish
- Convolutions and Invariants

Beta and Gamma Functions
- Principal and general value of an improper integral
- Infinite limits
- To find the value of \(\int_0^1 \frac{dx}{x^a} \)
- Test for the convergence of \(\int_0^1 \frac{dx}{x^a} \)
- To find the value of the integral \(\int_0^1 \frac{x^m}{1+x^n} \, dx \)
- To find the value of \(\int_0^1 \frac{x^n}{1-x^n} \, dx \)
- Deductions from \(\int_0^1 \frac{x^m}{1+x^n} \, dx \)
- \(\int_0^1 \frac{x^n}{1-x^n} \, dx \)
- Method of differentiation under the integration sign
- Method of integration under the integration sign
- Euler’s Integrals—Beta and Gamma Functions
- Elementary properties of Gamma Functions
- Transformations of Gamma Functions
- Another form of Beta Function
- Relation between Beta and Gamma functions
- Other transformations
- To prove that \(\Gamma(m+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}} \Gamma(2m) \)
- \(\int_0^1 \frac{dx}{(x-a)^n} \)

Double and Triple Integrals, Dirichlet’s Theorem
- Double Integrals
- Second order element in polar curves
- Multiple Integrals
- Area of the surface
- Dirichlet’s Theorem
- Liouville’s Extension of Dirichlet’s Theorem
- Change of order of integration
- Transformation of multiple Integrals
- Transformation for implicit functions
- Transformation of element of surface
- Volumes and Surfaces
- Polar Coordinates
- Examples on Surfaces
- Uniform Convergence of Sequences and Series of Functions
- Uniform Convergence
- Cauchy’s general principle of uniform convergence
- Dini’s Criterion for uniform convergence of a sequence of continuous functions
- Tests for uniform convergence
- Uniform convergence and continuity
- Uniform convergence and integration
- Uniform convergence and differentiation
- Everywhere continuous but nowhere differentiable functions
- Weierstrass’s non-differentiable function
- The Weierstrass’s Approximation Theorem
- Stone-Weierstrass Theorem
- Arzela’s Theorem on Equicontinuous Families
- Power Series
- Definition
- Cauchy’s theorems on limits
- Radius of convergence
- Uniform convergence of power series
- Properties of Power Series
- Abel’s Summability
- Differentiation and Integration of Vectors
- Vector function
- Limit and continuity of a vector function
- Derivative of a vector function with respect to a scalar
- Curves in space
- Velocity and acceleration
- Integration of vector functions
- Gradient, Divergence and Curl
- Partial derivatives of vectors
- The vector differential operator Del, \(\nabla \)
- Gradient of a scalar field
- Level Surfaces
- Directional derivative of a scalar point function
- Tangent plane and normal to a level surface
- Divergence of a vector point function
- Curl of a vector point function
- The Laplacian operator \(\nabla^2 \)
- Important vector identities
- Invariance
- Green’s, Gauss’s and Stoke’s Theorems
- Some preliminary concepts
- Line integrals
- Circulation
- Surface integrals
- Volume integrals
- Green’s theorem in the plane
- The divergence theorem of Gauss
- Green’s theorem
- Stoke’s theorem
- Line integrals independent of path
- Physical interpretation of div. and curl.
Contents

Measure & Integration
(Measure Theory & Functional Analysis)

- Basic Concepts of Set and Basic Operations
- Concepts of Set
- Notation
- Set of Sets
- Subset
- Super Set
- Equality of Sets
- Proper Subset
- Finite Set
- Infinite Set
- Null Set
- Power Set
- Universal Set
- Indexed Set and Index Set
- Hereditary Property
- Pairwise Disjoint
- Set Operations
- Union
- Intersection
- Disjoint Sets
- Difference of Sets
- Complement of a Set
- Symmetric Difference of Sets
- Distributive Law
- De-Morgan’s Law
- Ordered Pair
- Equality of Ordered Pairs
- Product of Sets
- Product Sets in General
- Functions and Sequences
- Function
- Onto and Into Mappings
- One-one and Many-one Mappings
- Real Valued Map
- Set Function
- Real Valued Set Function
- Extended Real Valued Set Function
- Sequence
- Convergent Sequence
- Bounded Sequence
- Metric Space
- Monotonic (Increasing & Decreasing)
- Axiom of Choice
- Choice Function
- Axiom of Choice
- Zermelo’s Postulate
- Chain
- Finite Character
- Hausdorff Maximal Principle
- Tukey’s Lemma
- Zorn’s Lemma
- Well-ordering Theorem
- Kuratowski Lemma
- Hausdorff Maximal Principle
- Ordered Sets
- Partially Ordered Set
- Comparable and Uncomparable
- The Totally Ordered Set
- Subset of a Ordered Set
- Order Complete
- Theorem
- Initial Segment
- First and Last Element
- Well Ordered Set
- Principle of Transfinite Induction
- Ordinal Number
- Ordinals
- Bounded Sets, Derived Sets,
- Open Sets and Closed Sets on the Real Line
- Real Line
- Open and Closed Intervals
- Open Set
- Continuity
- Bounded Linear Set
- Limit Point
- Derived Set
- Condensation Point
- Closed Set
- Open Set
- Countability of Sets
- Cardinally Equivalent
- Cardinal Numbers
- Sum of Cardinal Numbers
- Product of Cardinal Numbers
- Infinite Set
- Finite Set
- A Set A is Called a
- Denumerable Set if A ~ N
- Countable Sets
- Uncountable Set
- Power of Continuum
- Power Set
- Cardinal Number of
- Isolated Set
- Continuum Hypothesis
- Schroeder-Bernstein
- Measure and Outer Measure
- Boolean Ring (or Ring of Sets)
- σ-Ring of Sets
- Algebra of Sets (or Boolean Algebra or Field)
- σ-Algebra of Sets
- (or σ - Field)
- Semi-ring
- Monotone Class
- Complete Lattice
- Set Function
- Extended Real Valued Set Function
- Finite Function
- Postulates for an Ideal Measure Function
- Measurable Space
- Measure Function
- Hereditary Property
- Caratheodory’s Postulate
- For Outer Measure
- Measurable Set
- Elementary Set
- Lebesgue Measure of a Set
- Measure of an Open Set and a Closed Set
- Measure of an Open Interval
- Measure of a Closed Interval
- Measure of Rectangle
- Measure of a Paralleloiped
- Exterior and Interior Measure
- Lebesgue Measureable Set
- Almost Everywhere
- Cantor’s Tenanny Set
- Limiting Sets
- Covering in the Sense of Vitali
- Set of the Type F_σ
- Set of the Type G_δ
- Borel Set
- Borel Measurable
- Measurable Functions
- Almost Everywhere
- Equivalent Functions
- Characteristic Function
- Simple Function
- Step Function
- Limit Superior
- Limit Inferior
- Lebesgue Measurable Functions
- Borel Measurability Functions
- Little Wood’s Three Principles
- The Lebesgue Integral of a Function
- General Def. of Lebesgue Integral of a Function
- To Define Lebesgue Integral
- To Define Lebesgue Integral of an Unbounded Function
- f(x) Defined Over a Measurable Set E
- (Integral of a Non-negative Function)
- Theorems on Convergence of Sequences of Measurable Functions
- Convergence in Mean
- Convergence in Measure
- Pointwise Convergence
- Convergence Almost Everywhere
- Uniform Convergence
- Absolute Continuous Functions
- Indefinite Integral and Differentiation
- Continuous Function
- Absolute Continuous Function
- Indefinite Integral
- Differentiable
- Monotonic Functions
- Function of Bounded Variation
- Lipschitz Condition
- Lebesgue Point
- Fundamental Theorem of Integral Calculus
- Problems Related to Functions of Bounded Variation
- Variation Function
- Problems Related to Absolute Continuous Functions
- Problems Related to Indefinite Integral
- Problems Related to Lebesgue Point of a Function
- Some Miscellaneous Problems on Absolute Continuous Functions
- L^p-Spaces
- Conjugate Number
- L^p-Space
- Norm of an element of L^p-Space
- Distance Function or Metric
- Convergent Sequence
- Cauchy Sequence
- Completeness of L^p-Space
- Approximation by Continuous Functions
- Convex Function
- Examples on Convex Functions
- Definition
- Jensen Inequality
- Further Theorems on Lebesgue Integration
- Integration by Parts
- Introduction: Stieltjes Integral
- Cumulative Distribution Function
- Lebesgue-Stieltjes Integral
- The Weierstrass Approximation Theorems and Semi-Continuous Functions
- Polynomial Function
- Bernstein Polynomial
- Article
- Theory and Problems Related to
- Semi-continuous Functions
- Signed Measure
- Positive and Negative Sets
- Distinction between a Set of Measure Zero and
- a Null Set
- Singular Measures
- Jordan Decomposition
- Absolutely Continuous Measure Function
- Product Measure
- Rectangle
- Section
- X-Section
- Product Measure
- Double Integral
- Fourier Series
- Periodic Function
- Finite Discontinuity
- Even and Odd Functions
- Orthogonal Functions
- Trigonometric Polynomial
- Fourier Series
- The L^2-Theorem of Fourier Series
- Summation of Series by Arithmetic Means
- Summability of Fourier Series
- Banach Space
- Vector Space or (Linear Space)
- Subspace
- Linear Sum or Sum
- Direct Sum
- Quotient Space
- Basis or Hamel Basis
- Infinite Dimension
- Linear Transformation
- A Linear Map
- Partially Ordered Set
- Minimal and Maximal Elements
- Supremum: Infimum
- Zorn’s Lemma
- Normed Linear Space
- Banach Space
- Uniform Convergence
- Convergent
- Bounded Map
- Isometric Isomorphism
- Graph of a Function
- Closed Linear Map
- Some Elementary Definitions
- Functional Conjugate Space
- Convergence
- Projection
- Algebra
- Banach Algebra
- Conjugate of an Operator
- Weak and Strong Convergence
- Uniform Convergence Implies Strong Convergence
- Dense Subset
- Separable Space
- Definition : Summable
- Hilbert Space
- Inner Product Space
- Hilbert Space
- Adjoint Operator (Conjugate Operator)
- Different Types of Operators
- Conjugate Space H^*
- Continuity
- Orthogonality
- Orthogonal Set
- Complete Orthonormal Set
- Perpendicular Projection
- Parallelogram Law
- Invariant
- Uniformly
- Convex
- Problems Related to Operators
- Projection
- Some Numerical Problems on Orthogonalization
- Finite Dimensional Spectral Theory
- Spectral Solution
- Invariant
- Reduction
- Banach Algebra
- Algebra
- Division Algebra
- Banach Algebra
- Regular Elements
- Singular Element
- Spectrum Radius
- Spectral Radius
- Topological Divisors of Zero.
Real Analysis (General)

- Cantor and Dedekind's Theories of Real Numbers
- Need for extending the system of rational numbers
- Dedekind's theory of real numbers
- Relations of Equality and order in cuts
- Addition of Cuts
- Multiplication of Cuts
- Reciprocal of a Cut
- Rational and Irrational Cuts
- Denseness of Cuts
- Sections of Real Numbers: Dedekind’s Theorem
- Cantor’s Theory of Real Numbers
- Equivalence of Cantor and Dedekind’s Theories
- Elements of Set Theory
- Sets and their basic operations
- Relations
- Functions
- Order
- Denumerable Sets
- Decimal, Ternary and Binary Representations
- Cardinal Arithmetic
- Real and Complex Number Systems
- Binary operations or Binary Composition in a Set
- Field Axioms
- R as a Complete Ordered Field
- Extended Real Numbers
- Complex Numbers
- C as a Field
- Difference and division of two Complex Numbers
- Modulus and argument of a Complex Number
- The geometrical representation of a Complex Numbers
- Conjugate Complex Numbers
- Properties of Moduli
- Properties of Arguments
- Impossibility of Ordering Complex Numbers
- Riemann Sphere and the Point at Infinity
- Sequences of Real Numbers
- Convergent Sequences
- Divergent Sequences
- Bounded Sequences
- Monotone Sequences
- Operations on Convergent Sequences
- Cauchy’s Theorems on Limits
- Use of Cauchy’s Theorems on Limits
- Harder Examples on Limits
- Nested Interval Theorem
- Cauchy Sequences
- Limit Superior and Limit Inferior
- Series of Real Numbers
- Series of Non-negative terms
- All terms greater than some fixed positive number
- Comparison Tests
- The Auxiliary Series $\sum \frac{1}{n \log n}$
- Comparison of Ratios
- Raabe’s Test
- Logarithmic Test
- D’Alembert’s Ratio Test
- Cauchy’s Condensation Test
- The Auxiliary Series $\sum \frac{1}{n (\log n)^2}$
- Cauchy’s Root Test
- Taylor’s development of a function

Contents

- Cantor and Dedekind’s Theories of Real Numbers
- Need for extending the system of rational numbers
- Dedekind’s theory of real numbers
- Relations of Equality and order in cuts
- Addition of Cuts
- Multiplication of Cuts
- Reciprocal of a Cut
- Rational and Irrational Cuts
- Denseness of Cuts
- Sections of Real Numbers: Dedekind’s Theorem
- Cantor’s Theory of Real Numbers
- Equivalence of Cantor and Dedekind’s Theories
- Elements of Set Theory
- Sets and their basic operations
- Relations
- Functions
- Order
- Denumerable Sets
- Decimal, Ternary and Binary Representations
- Cardinal Arithmetic
- Real and Complex Number Systems
- Binary operations or Binary Composition in a Set
- Field Axioms
- R as a Complete Ordered Field
- Extended Real Numbers
- Complex Numbers
- C as a Field
- Difference and division of two Complex Numbers
- Modulus and argument of a Complex Number
- The geometrical representation of a Complex Numbers
- Conjugate Complex Numbers
- Properties of Moduli
- Properties of Arguments
- Impossibility of Ordering Complex Numbers
- Riemann Sphere and the Point at Infinity
- Sequences of Real Numbers
- Convergent Sequences
- Divergent Sequences
- Bounded Sequences
- Monotone Sequences
- Operations on Convergent Sequences
- Cauchy’s Theorems on Limits
- Use of Cauchy’s Theorems on Limits
- Harder Examples on Limits
- Nested Interval Theorem
- Cauchy Sequences
- Limit Superior and Limit Inferior
- Series of Real Numbers
- Series of Non-negative terms
- All terms greater than some fixed positive number
- Comparison Tests
- The Auxiliary Series $\sum \frac{1}{n \log n}$
- Comparison of Ratios
- Raabe’s Test
- Logarithmic Test
- D’Alembert’s Ratio Test
- Cauchy’s Condensation Test
- The Auxiliary Series $\sum \frac{1}{n (\log n)^2}$
- Cauchy’s Root Test
- Taylor’s development of a function

- Definitions
- Limits
- Algebra of Limits
- Continuity
- The four functional limits at a point
- Kinds of discontinuities
- Saltus
- Theorems on continuity
- Theorems on discontinuous functions
- Pointwise, discontinuous functions
- Uniform continuity
- Absolute continuity
- Continuity of the inverse function
- Some more examples on continuity
- Differentiability
- Derivative at a point
- Progressive and regressive derivatives
- Differentiability in $[a, b]$
- Derivative of a function
- Meaning of the sign of derivative
- Geometrical meaning of a derivative
- A necessary condition for the existence of a finite derivative
- Algebra of derivatives
- The chain rule
- Derivative of an inverse function
- Darboux Property
- Rolle’s Theorem
- Lagrange’s Mean Value theorem
- Deductions from mean value theorem
- Cauchy’s mean value theorem
- Taylor’s development of a function in a finite form with Lagrange’s form of remainder
- Taylor’s theorem with Cauchy’s form of remainder
- The Riemann Integral
- Sets of measure zero
- Partitions and Riemann Sums
- Upper and Lower R-integrals
- R-integrability
- Riemann’s necessary and sufficient conditions for R-integrability
- Some classes of integrable functions
- Algebra of integrable functions
- Fundamental theorem of Integral Calculus
- Mean Value Theorems
- Integration by Substitution
- Integration by Parts
- The integral as a limit
- The Riemann Stieljes Integral
- A generalization of the Riemann Integral
- Partitions
- Lower and upper Riemann-Stieljes sums
- The lower and upper Riemann-Stieljes Integrals
- The Riemann Stieljes Integral
- The RS-integral as a limit of sums
- Some classes of RS-integrable functions
- Algebra of RS-integrable functions
- A relation between R-integral and RS-integral
- Integration of vector valued functions
- Function of bounded variation
- Some more theorems on Integration
- Convergence of Improper Integrals
- Improper Integrals
- Integral with infinite limits
- Tests for the convergence of $\int_a^x f(x) \, dx$
- Comparison Test
- To test the convergence of $\int_a^x f(x) \, dx$ where $a > 0$
- The μ-test
- Abel’s test
- Dirichlet’s test
- Absolute convergence
- Test for the convergence of improper integral $\int_a^b f(x) \, dx$
- Comparison test
- To test the convergence of $\int_a^b \frac{dx}{(x - a)^n}$
- The μ-test
- Abel’s test
- Dirichlet’s test
- Operations with Improper integrals
- Metric Spaces
- Euclidean spaces
- Metric spaces
- Neighbourhoods, limit points, open and closed sets
- Connectedness
- Compactness
- Completeness and Cantor’s Intersection Theorem
- Baire category Theorem
- Completeness and Contracting mappings
- Limits and Continuity
- Functions of Several Variables
- Continuity of Functions of two Variables
- Partial Derivatives
- Interchange of the Order of Differentiation
- Differentiability of two variables
- Composite Functions
- Linear transformations
- Matrices
- Differentiation
- Partial Differentiation
- The Inverse Function Theorem
- The Implicit Function Theorem
- Jacobians
- Definition
- Case of Functions of Functions
- Jacobian of Implicit Functions
- Necessary and sufficient condition for a Jacobian to vanish
- Convariant and Invariants
- Beta and Gamma Functions
- Principal and general values of an improper integral
- Infinite limits
- To find the value of $\int_a^b \frac{f(x)}{F(x)} \, dx$
- To find the value of the integral $\int_a^b \frac{x^{2m}}{1 + x^{2n}} \, dx$
- To find the value of $\int_0^\infty \frac{x^{2m}}{1 - x^{2n}} \, dx$
- Deductions from $\int_0^\infty \frac{x^{2m}}{1 + x^{2n}} \, dx$ and...
Vector Calculus

- Differentiation and Integration of Vectors
- Vector function
- Limits and continuity of a vector function
- Derivative of a vector function with respect to a scalar
- Curves in space
- Velocity and acceleration
- Integration of vector functions
- Gradient, Divergence and Curl
- Partial derivatives of vectors
- The vector differential operator Del, ∇
- Gradient of a scalar field
- Level Surfaces
- Directional derivative of a scalar point function
- Tangent plane and normal to a level surface
- Divergence of a vector point function
- Curl of a vector point function
- The Laplacian operator ∇²
- Important vector identities
- Invariance
- Green’s, Gauss’s and Stoke’s Theorems
- Some preliminary concepts
- Line Integrals
- Circulation
- Surface integrals
- Volume integrals
- Green’s theorem in the plane
- The divergence theorem of Gauss
- Green’s theorem
- Stoke’s theorem
- Line integrals independent of path
- Physical interpretation of divergence and curl.

Modern Algebra (Abstract Algebra)

- Some Basic Set Theoretic Concepts
- Mathematical logic
- Tautologies
- Set
- Subsets of a set
- Union of Sets
- Intersection of sets
- Cartesian product of two sets
- Functions or mappings
- Binary operation
- Relations
- Equivalence relations
- Equivalence classes
- Partitions
- Partial order relations
- Groups
- Binary operation on a set
- Algebraic structure
- Group
- Definition
- Abelian Group
- Finite and infinite groups
- Order of a finite group
- General properties of groups
- Definition of a group based upon left axioms
- Composition tables for finite sets
- Addition modulo m
- Multiplication modulo p
- Residue classes of the set of integers
- An alternative set of postulates for a group
- Permutations
- Group of permutations
- Cyclic permutations
- Even and odd permutations
- Integer power of an element of a group
- Order of an element of a group
- Isomorphism of groups
- The relation of isomorphism in the set of all groups
- Complexes and subgroups of a group
- Intersection of subgroups
- Cosets
- Relation of congruence module a subgroup H in a group G
- Lagrange’s theorem
- Euler’s theorem
- Fermat’s theorem
- Order of the product of two subgroups of finite order
- Cayley’s theorem
- Cyclic groups
- Subgroup generated by a subset of a group
- Generating system of a group
- Groups (Continued)
- Normal subgroups
- Conjugate elements
- Normalizer of an element of a group
- Class equation of a group
- Centre of a group
- Conjugate subgroups
- Invariant subgroups
- Quotient Groups
- Homomorphism of Groups
- Kernel of a homomorphism
- Fundamental theorem on homomorphism of groups
- Automorphisms of a group
- Inner automorphisms
- More results on group homomorphism
- Maximal subgroups
- Composition series of a group and the Jordan-Hölder theorem
- Solvable groups
- Commutator subgroup of a group
- Direct products
- External direct products
- Internal direct products
- Cauchy’s theorem on abelian groups
- Cauchy’s theorem
- Sylow’s theorem
- Rings
- Elementary properties of a ring
- Rings with or without zero divisors
- Internal domain
- Field
- Division ring or skew field
- Isomorphism of rings
- Subrings
- Subfields
- Characteristic of a ring
- Ordered internal domains
- Imbedding of a ring into another ring
- The field of quotients
- Ideals
- Principal ideal
- Principal ideal ring
- Divisibility in an integral domain
- Units
- Associates
- Prime elements
- Greatest common divisor
- Polynomial rings
- Polynomials over an internal domain
- Division algorithm for polynomials over a field
- Euclidean algorithm for polynomials over a field
- Unique factorization domain
- Unique factorization theorem for polynomials over a field
- Remainder theorem
- Prime fields
- Rings of endomorphisms of an Abelian group
- Rings (Continued)
- Quotient rings or residue class rings
- Homomorphism of rings
- Kernel of a ring homomorphism
- Maximal ideals
- Prime ideals
- Euclidean rings or Euclidean domains
- Polynomial rings over unique factorization domains
- Vector Spaces
- Definition
- General properties of...
The primary focus of the page is on matrices, including topics such as the definition of matrices, properties of matrices, and theorems related to matrices. The page also touches on other mathematical concepts such as number theory, linear dependence and independence of vectors, characteristic roots, and orthogonality.

Here is a structured summary of the content:

Matrices

- **Basic Concepts:** Matrix, Submatrix, Row, Column, Matrix Rank, Determinant, Minor, Cofactor, Adjoint Matrix
- **Elementary Operations:** Addition, Multiplication, Cyclic and Complementary Subspace
- **Field Extensions:** Algebraic and Simple Field Extensions, Normal Extension
- **Euler's Theorem:** Euler's theorem, Eigenvectors and Eigenvalues, Normal Matrices, Hermitian Matrices
- **Diagonalization:** Diagonalizable Matrices, Orthogonally Similar Matrices, Quadratic Forms
- **Annihilators:** Annihilators of Matrices
- **Galois Theory:** Field Extensions, Finite Field Extensions
- **Matrix Polynomials:** Matrix Polynomials, Companion Matrix
- **Eigenvalues and Eigenvectors:** Characteristic Values, Characteristic Vectors, Cayley-Hamilton Theorem
- **Orthogonal Matrices:** Orthogonal Matrices, Orthogonality, Unitary Matrices
- **Orthogonal Vectors:** Orthogonal Vectors, Inner Product of Vectors
- **Linear Transformations:** Linear Transformations, Operators, Isomorphisms of Linear Spaces
- **Submodules:** Submodules of Modules, Homomorphisms

Mathematical Methods

- **Spherical Harmonics:** Spherical Harmonics, Kelvin's Theorem
- **Legendre's Equation:** Legendre's Equation, Legendre Polynomials
- **Bessel's Equation:** Bessel's Equation, Bessel Functions
- **Laplace's Equation:** Laplace's Equation, Laplace's Integral
- **Bessel's Functions:** Bessel Functions, Orthogonal Properties of Bessel Functions
- **Recurrence Relations:** Recurrence Relations, Beltrami's Results
- **Series Expansions:** Series Expansions, Rodrigues' Formula
- **Special Functions:** Special Functions, Generalized Functions
- **Number Theory:** Number Theory, Divisibility, Congruence
- **Linear Algebra:** Linear Algebra, Vector Spaces, Linear Transformations

Additional Notes

- **The Fundamental Theorem of Arithmetic:** Theorem, Proof
- **Wilson's Theorem:** Wilson's Theorem, Proof
- **Euclid's Lemma:** Euclid's Lemma, Proof
- **Least Common Multiple:** LCM, Properties
- **Greatest Common Divisor:** GCD, Properties

The page emphasizes the importance of understanding the underlying concepts and theorems related to matrices and their applications in various fields of mathematics.
• If \(v \) is a solution of Legendre’s Equation then \((1 - x^2)^{n/2} \frac{d^n y}{dx^n} \) is a solution of associated Legendre’s Equation.
• Associated Legendre’s Function.

Properties of the associated Legendre’s Function.
• Orthogonal properties of associated Legendre’s Functions.
• Recurrence formulae for associated Legendre’s Functions.
• Trigonometrical Series for \(P_n(x) \).

Legendre’s Functions of the Second Kind \(Q_n(x) \).
• Legendre’s Functions of the second kind.
• Neumann’s Integral.
• Recurrence formulae for \(Q_n(x) \).
• Relation between \(P_n(x) \) and \(Q_n(x) \).
• Christoffel’s Second Summation formula.
• Assuming \(P_n(x) \) as a solution of Legendre’s Equation, show that the complete solution of this Legendre’s Equation is \(AP_n(x) + BQ_n(x) \).

Hypergeometric Functions.
• Gauss’s Hypergeometric Equation.
• The Hypergeometric Series.
• Particular cases of Hypergeometric Series.
• Different forms of Hypergeometric Function.
• Solution of Hypergeometric Equation.
• Linear relations between the solution of the Hypergeometric Equation.
• Symmetric property of Hypergeometric Function.
• Integral formula for the Hypergeometric Function.
• Kummer’s Theorem.
• Gauss’s Theorem.
• Vandermonde’s Theorem.
• Differentiation of Hypergeometric Function.
• The confluent Hypergeometric Functions.
• theorem.
• Whittaker’s confluent Hypergeometric Function.
• General solution of Bessel’s Equation.
• Integration of Bessel’s Equation in series for \(n = 0 \).
• Definition of \(J_0(x) \).
• Recurrence Formulae for \(J_n(x) \).
• Generating function for \(J_n(x) \).
• A second solution of Bessel’s Equation.
• Hermite Polynomials.
• Hermite Differential Equation.
• Solution of Hermite Equation.
• Hermite’s Polynomials.
• Generating Function.
• Other forms for the Hermite Polynomials.
• To find first few Hermite Polynomials.
• Orthogonal properties of Hermite Polynomials.
• Recurrence formulae for Hermite Polynomials.

Laguerre Polynomials.
• Laguerre Differential Equation.
• Solution of Laguerre Equation.
• Laguerre’s Polynomials.
• Generating Function.
• Other form for the Laguerre Polynomials.
• To find first few Laguerre Polynomials.
• Orthogonal properties of the Laguerre Polynomials.
• Recurrence formulae for the Laguerre Polynomials.
• Recurrence formulae for Laguerre Polynomials.
• Associated Laguerre’s Equation.
• If \(v \) is a solution of Laguerre’s Equation of order \(n + \alpha \), then \(\frac{d^n y}{dx^n} \) satisfies Laguerre’s Associated Equation.
• Associated Laguerre’s Polynomials (Def.).
• Associated Laguerre’s Polynomials \(L_n^\alpha(x) \).
• Generating function.
• Other form for associated Laguerre’s Polynomial.
• Orthogonal properties of the associated Laguerre Polynomials.
• Recurrence formulae for the associated Laguerre Polynomials.

Chebyshev Polynomials.
• Chebyshev’s Diff. Equation.
• Chebyshev Polynomials.
• To prove that \(T_n(x) \) and \(U_n(x) \) are independent solutions of Chebyshev’s Equation.
• Relations for \(T_n(x) \) and \(U_n(x) \).
• Generating Function.
• Orthogonal properties of Chebyshev Polynomials.
• Recurrence formulae for \(T_n(x) \) and \(U_n(x) \).

Orthogonal Set of Functions.
• Definitions.

Generalized Fourier Series.
• Other Type of orthogonality.
• Strum-Liouville Equation.
• Theorem.
• Theorem: Eigen Values of the Strum-Liouville prob. are all real.
• Theorem.
• Orthogonality of Legendre Polynomials.
• Orthogonality of Bessel Function.
• Orthogonality of Hermite Polynomials.
• Orthogonality of Laguerre Polynomials.
• Orthogonality of Chebyshev Polynomials.
• Orthogonality of Jacobi Polynomials.
• Bessel’s Inequality and completeness relation.
• Definitions.
• Theorem: If an orthonormal set \(\{ \phi_n(x) \} \) is closed, it is complete.

Wave, Heat and Laplace’s Equations.
• One-Dimensional wave-equation.
• Two-Dimensional wave-equation.
• Heat Equation.
• Laplace’s Equation.
• Laplace’s Equation in terms of spherical co-ordinates.
• Laplace’s Equation in terms of cylindrical co-ordinates.
• Diffusion Equation.
• Boundary Value Problems.
• Cylindrical.
• Solution of separation of Variables.
• Solution of one-dimensional wave equation.
• Solution of two-dimensional wave equation.
• Variation of a circular membrane.
• Solution of one-dimensional heat equation.
• Solution of two-dimensional Laplace’s Equation.
• Solution of two-dimensional heat equation.
• Solution of two-dimensional Laplace’s Equation given in the cylindrical co-ordinates.
• Solution of the Laplace’s Equation given in spherical co-ordinates.
• Solution of Laplace’s Equation given in spherical co-ordinates.
• Solution of three dimensional wave equation in spherical polar co-ordinates.
• Solution of Diffusion Equation.
• Solution of Diffusion Equation in cylindrical co-ordinates.

Spherical Harmonics.
• Kelvin’s Theorem.
• Legendre’s equation from Laplace’s equation.
• Bessel’s equation from Laplace’s equation.

Legendre’s Equation.
• Definition of \(P_n(x) \) and \(Q_n(x) \).
• General solution of Legendre’s equation.
• To show that \(P_n(x) \) is the coefficient of \(h^n \) in the expansion of \((1 - 2xh + h^2)^{-1/2}\).
• Laplace’s Definite integrals for \(P_n(x) \).
• Orthogonal properties of Legendre’s Polynomials.
• Recurrence formulae.
• Bessel’s Result.
• Christoffel’s expansion.
• Christoffel’s Summation formula.
• Rodrigues formula.
• Even and odd functions.
• Expansion of \(x^n \) in Legendre’s Polynomial’s.
• General Results.
• An important case.
• Associated Legendre’s Equation.
• If \(v \) is a solution of Legendre’s equation then \((1 - x^2)^{m/2} \frac{d^m v}{dx^m} \) is a solution of associated Legendre’s equation.
• Associated Legendre’s Function.

Properties of the associated Legendre’s Function.
• Orthogonal Properties of associated Legendre’s Functions.
• Recurrence formulae for associated Legendre’s Functions.
• Trigonometrical Series for \(P_n(x) \).
• Legendre’s Functions of the Second Kind \(Q_n(x) \).

Contd...
...Contd: Special Functions (Spherical Harmonics)

Integral • Recurrence formulae for $Q_n(x)$ • Relation between $P_0(x)$ and $Q_0(x)$ • Christoffel’s Second Summation formula • Assuming P_n as a solution of Legendre’s equation show that the complete solution of Legendre equation is $AP_0(x) + BQ_0(x)$ • Hypergeometric Functions • Gauss’s hypergeometric equation • The hypergeometric series • Different forms of hypergeometric function • Solution of hypergeometric equation • Linear relations between the solution of the hypergeometric equations • Symmetric Property of hypergeometric function • Integral formula for the hypergeometric function • Kummer’s Theorem • Gauss’s Theorem • Vandermonde’s Theorem • Differentiation of hypergeometric function • The confluent hypergeometric function • Theorem • Whittaker’s hypergeometric function • Integral representation of confluent hypergeometric function $\frac{1}{\Gamma(\alpha, \gamma, x)}$ • Differentiation of confluent hypergeometric function • Continuous hypergeometric function • Theorem • Dixon’ Theorem • Bessel’s Equations • Solution of Bessel’s General Differential Equations • General solution of Bessel’s Equation • Integration of Bessel’s equation in series for $n = 0$ • Definition of $J_n(x)$ • Recurrence formula for $J_n(x)$ • Generating function for $J_n(x)$ • A second solution of Bessel’s Equation • Hermite Polynomials • Hermite Differential Equation • Solution of Hermite Equation • Hermite’s Polynomials • Generating Function • Other forms for Hermite Poly • To find first few Hermite Polys • Orthogonal properties of Hermite Polynomials • Recurrence formulae for Hermite Polynomials • Laguerre Polynomials • Laguerre’s Differential equation • Solution of Laguerre’s equation • Laguerre Polynomials • Generating function • Other forms for the Laguerre Polys. • To find first few Laguerre Polys. • Orthogonal Property of the Laguerre Polys. • Recurrence formula for Laguerre Polynomials • Associated Laguerre’s Equation • If v is a solution of Laguerre’s equation of order $n + \alpha$ then $\frac{dv}{dx}^\alpha$ satisfies Laguerre’s associated equation

• Associated Laguerre’s Polynomials (Def.) • Associated Laguerre’s Polynomials $L_n^\alpha(x)$ • Generating function • Other forms for associated Laguerre Polynomial • Orthogonal property of associated Laguerre Polynomials • Recurrence formulae for the associated Laguerre Polynomials • Chebyshev Polynomials • Chebyshev’s Diff. Equations • Chebyshev polynomials • To prove that $T_n(x)$ and $U_n(x)$ are independent solution of Chebyshev’s Equation • Relations for $T_n(x)$ and $U_n(x)$ • To find first few Chebyshev Polys. • Generating function • Orthogonal properties of Chebyshev polyn. • Recurrence formulae for $T_n(x)$ and $U_n(x)$ • Orthogonal Set of Functions • Generalized Fourier Series • Other Type of orthogonality • Strum-Liouville Equation • Theorem • Theorem: Eigen Values of the Strum-Liouville Problem are all Real • Theorem • Orthogonality of Legendre Polys. • Orthogonality of Bessel Functions • Orthogonality of Hermite Polys. • Orthogonality of Laguerre Polys. • Orthogonality of Chebyshev Polys. • Orthogonality of Jacobi Polys. • Bessel’ inequality and Completeness Relation • Definitions • Theorem: If an orthonormal set is closed, it is complete • Elliptic Functions • Periodic Functions • Elliptic Functions • Order of an Elliptic Function • Properties of an Elliptic Function • Weierstrass’s function • Properties of Weierstrass’s Sigma function • Properties of $\xi(x)$ • Weierstrass’s Elliptic Function • Properties of $p(x)$ • An algebraic relation connecting two elliptic functions • The differential equation satisfied by two Weierstrass’s elliptic function $p(z)$ • The three roots e_1, e_2, e_3 of eqn. $4a^2 - g_2g_3 - g_3 = 0$ are all distinct • The pseudo periodicity of $\xi(z)$ and $\sigma(z)$ • Jacobi’s Elliptic Functions • Construction of Jacobi’s elliptic functions • Relation between Jacobi’s elliptic functions and their derivatives • The complementary modulus • Few important Results • Elliptic Integrals • Derivatives of $s_n(z)$ • $c_n(z)$ and $d_n(z)$ • Periods of $s_n(z)$, $c_n(z)$, $d_n(z)$ • The addition theorem • Beta and Gamma Functions • Principle and general values of an improper integral • Infinite limits • To find value of $\int_{-\infty}^{\infty} f(x) dx$ • To find value of $\int_{-\infty}^{\infty} \frac{x^{2n}}{1 + x^{2n}} dx$ • To find value of $\int_{-\infty}^{\infty} \frac{x^{2n}}{1 - x^{2n}} dx$ • Deduction from $\int_{-\infty}^{\infty} \frac{x^{2n}}{1 + x^{2n}} dx$ and $\int_{0}^{\infty} \frac{x^{2n}}{1 - x^{2n}} dx$ • Method of differentiation under the integration sign • Method of integration under the sign of integration • Euler’s Integrals — Beta and Gamma Functions • Elementary properties of Gamma Functions • Transformation of Gamma Functions • Another form of Beta Function • Relation between Beta and Gamma Functions • Other Transformations • To find the value of $\Gamma\left(\frac{1}{n}\right)\Gamma\left(\frac{2}{n}\right)\ldots \Gamma\left(\frac{n-1}{n}\right)$ • The Dirac Dirac Function • Delta Function • Properties of Dirac delta function • Derivatives of $\delta(x)$ • The Heaviside Unit Function • The Dirac delta function is the derivative of the Heaviside unit function $H(x)$.

Vector Algebra

• Vectors-Addition and Subtraction • Vector and Scalar Quantities • Addition of Vectors • Multiplication of a Vector by a Scalar • Resolution of a Vector in Terms of Coplanar Vectors • Non-coplanar Vectors • Orthonormal System of Unit Vectors i, j, k • Position Vector • Collinearity of Three Points • Products of two Vectors • The Scalar or Dot Product of Two Vectors • Condition for Perpendicularity of Two Vectors • Distributive Law for Scalar Product • The Vector or Cross-product of Two Vectors • Expression for Vector Product in Terms of Rectangular Components of the Vectors • Multiple Products • Scalar Triple Products • Distributive Law for Vector Product of Two • Condition for Three Vectors to be Complanar • To Express the Value of the scalar Triple Product in Terms of Rectangular Components of Vectors • Vector Triple Product • To Prove that $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$ • Scalar Product of Four Vectors • Vector Product of Four Vectors • Reciprocal System Vectors • Vector Equations

Contd...
Mathematical Statistics

...Contd: Vector Algebra
of a Line and a Plane • Vector Equation of a Straight Line • Condition for Three Points to be Collinear • Bisector of the Angle between Two Straight Lines • Vector Equation of a Plane • Condition for Four Points to be Coplanar • Centroids • Further Application of Vectors to Geometry and Mechanics - Geometry of Plane • Vector Equation of a Plane • Angle between Two Planes • The Two Sides of a Plane • Perpendicular Distance of a Point from a Plane • Planes Through the Intersection of Two Planes • Geometry of the Straight Line • Line of intersection of Two Plane • Condition for Two Lines to be Coplanar • Shortest Distance between Two Non-intersecting Lines • Volume of a Tetrahedron • Geometry of the Sphere • The Vector Equation of a Sphere • Tangent Plane at a Given Point • Diametral Plane • Radical Plane • Application to Mechanics • Lami’s Theorem • Work • Vector Moment or Torque • Relative Motion • Relative Velocity.

Meaning and Purpose of Statistics • Origin of Statistics • Definition of Statistics • Scope and Limitations of Statistics • Population and sample • Main Stages of a Statistical Enquiry • Distrust of Statistics • Frequency Distributions and Measures of Central Tendency • Classification and Tabulation • Frequency Polygon, Histogram and Ogive • Various forms of Frequency Curves • Measures of Central Tendency • Arithmetic Mean • Proof of the formula on Means NM = N1M1 + N2M2 + ... + NMk • Median • Mode • Mode by Grouping • Geometric Mean • Harmonic Mean • Quartiles and Partition Values • Desiderata for a Satisfactory Average • Empirical Relation between Mean, Median and Mode • Measures of Dispersion and Skewness • Range • Quartile Deviation or Semi-Inter Quartile Range • Standard Deviation or the Root Mean Square Deviation from the Mean • Mean Deviation or the Average Deviation • Coefficient of Variation • Moments • Probability • Definition • Statistical or Empirical Definition • Some Definitions • Addition Theorem of Probability • Multiplication theory of Probability • Dependent and Independent Events • Probability of at least One Event • Binomial and Multinomial Theorems • Multinomial Theorem • Probabilities: Axiomatic Approach • Addition Theorem of Probability • Conditional Probability • Variate or a Random Variable • Relative frequencies and probabilities • Theorem of Total Probability for Compound Events • Baye’s Theorem • Random Variable Distribution Function • Random Variable or Variate • Type of Random Variables • Distribution Function • Probability Mass Function • Discrete Distribution Function • Function • Probability Density Function • Continuous Frequency Distributions • Discrete and Continuous Variables • Continuous Distributions • Cumulative Distributions or Probability Distribution Function • Any Functions • Moments • Geometric Mean G • Sum of Random Variables, Convolutions • Marginal and Conditional Probabilities • Chebyshev’s and Markov’s Inequalities • Probability Function of a Quotient • Change of variable • Bivariate Distributions • Marginal Distributions • Conditional Probability Density • Stochastic Independence • Important Theoretical Distributions • Theoretical Distributions • Binomial distribution • Pascal’s Triangle • Moments of the Binomial Distribution • Proof of the formula Mk = \(p^n \frac{d^n}{dp^n} (p + q)^n \) • Mode of Binomial Distribution • Recursion formula for binomial distribution \(\mu_{r+1} = pq \left(n\mu_{r-1} + \frac{d\mu_r}{dp} \right) \) • Poisson Distribution • Poisson Process • Mode of the Poisson Distribution • Constants of the Poisson Distribution • Multinomial Distribution • Hyper-geometric Distribution • Mean and variance of the Hyper-geometric Distribution • Normal Distribution • Derivation of Normal Distribution • Properties of Normal Distribution • Constants of the Normal Distribution • Some further properties of the Normal Distribution • Probable Error • Importance of the Normal Distribution • Fitting a Normal Distribution • Central Limit Theorem • The Law of Large Numbers • Weak law of Large Numbers • Moment Generating Functions and Cumulants • Expectation of a Random Variable • Expectation of Functions of Random Variable • Expectation of Functions of two Random Variables • Moment Generating Function • Change of origin and scale in Moment Generating Function • M.G.F. of a sum • Binomial Distribution • Poisson Distribution • Negative Binomial Distribution • Normal Distribution • Sum of Independent Normal variates • Cumulants • Additive Property of Cumulants • Factorial Moments • Sum of Poisson variates • Characteristic Function • Inversion • Cauchy’s Distribution • Probability Generating Function • Properties of Characteristic Functions • Some Characteristic Functions • Probability Generating Functions • Relation between Probability Generating Function and Characteristic Function • Factorial Moment Generating Functions • Method of Least Squares and Curve Fitting • Method of Least squares • Some Special Curves • Bivariate Distribution, Regression and Correlation • Scatter or Dot Diagram • \(r \) independent of Origin and Scale • Sterograms and Collection Surface • Probable error of coefficient of Correlation • Rank Correlation • \(r \) lies between –1 and 1 • Variance of a sum or difference • Regression • Range of \(r \) • Correlation ratio • Linear Relationship • Causation and effect • Regression and Correlation • Multiple and Partial Correlation • Multiple Correlation and Partial Correlation • Equation of the Regression Plane • Multiple Correlation Coefficient • Partial Correlation Coefficient • Consistence of Data and Association of Attributes • Attributes • Classification with reference to attributes • Class frequencies • Relation between class frequencies • Consistence of data • Independence and Association of attributes • Yule’s coefficient of Association • Finite Differences and Interpolation • Difference Table • Some Nomenclatures • E and \(\Delta \) notation • Factorial Notation • Interpolation • Algebraic Methods of Interpolation • Newton’s Formula for equal Intervals • Lagrange’s Formula • Central Differences • Gauss’s Backward Formula • Gauss’s Forward Formula • Bessel’s Formula • Stirling’s Formula • Distinction between Interpolation and Extrapolation • Divided Differences Formula • Newton’s Divided Differences Formula • Preliminary Concepts on Sampling • Universe, definition • Sampling: Types of samples • Simple Sampling • Devices for Random Sampling • Tippett’s Numbers • Stratified Sampling • Simple Sampling of Attributes-Large Samples • Population and Samples • Simple
Operations Research

- Introduction to Operations Research
- Introduction (The Origin and the Development of OR)
- Nature and Definition of OR
- Objective of OR
- Phases of OR Method
- Areas of Applications (Scope) of OR
- Operations Research and Decision-Making
- Scientific Method in OR
- Characteristics of Operations Research
- Modeling in OR
- Types of Models
- General Methods of Solution for OR Models
- Mathematical Preliminaries
 - Elementary Probability Theory
 - Sample Space
 - Events
 - Algebra of Events
 - Classical Definition of Probability
 - Odds in Favour and Odds Against
 - The Statistical (or Empirical) Definition of Probability
 - Axiomatic Definition of Probability
 - Natural Assignment of Probabilities
 - Theorem of Total Probability or Additional Theorem of Probability
 - Compound Events
 - Independent and Dependent Events
 - Conditional Probability
 - Multiplication Theorem of Probability
 - Random Variable
 - Discrete Probability Distributions
 - Expectation of a Random Variable
 - Special Discrete Probability Distributions
 - Continuous Probability Distributions
 - Special Continuous Probability Distributions
- Matrices and Determinants
 - Definitions
 - Operations of Matrix Addition and Multiplication
 - Sub-Matrix
 - Minor of Order k
 - Determinant
 - Important Properties of Determinants
 - Minors
 - Cofactors
 - Rank of a Matrix
 - Adjoint of a Matrix
 - Singular and Non-Singular Matrices
 - Inverse of a Matrix
- Vectors and Vector Spaces
 - Definitions
 - Euclidean Space
 - Linear Dependence and Independence of Vectors
 - Linear Combination (L.C.) of Vectors
 - Spanning Set
 - Basis Set
 - Some Useful Theorems of Linear Algebra
 - Simultaneous Linear Equation
 - Finite Difference
 - First Difference of f(x)
 - Second Difference of f(x)
 - Conditions for a Maximum or Minimum of f(x)
- Differentiation of Integrals
- Generating Functions
- Inventory Theory
 - Inventory
 - Variables in Inventory Problems
 - Need of Inventory
 - Inventory Problems
 - Advantages and Disadvantages of Inventory
 - Classification of Inventory Models
 - Some General Notations Used in Inventory Models
 - Deterministic Models
 - Economic Lot Size Models
 - Model 1: Economic Lot Size Model with Uniform Rate of Demand
 - Infinite Production Rate and having no Shortages
 - Another form of Model I
 - Model II: Economic Lot-size Model with Different Rates of Demand in Different Production Cycles
 - Infinite Production Rate and having no Shortages
 - Model III: Economic Lot-size Model with Uniform Rate of Demand, Infinite Rate of Replenishment having no Shortages
- Deterministic Models With Shortages
 - Model IV: Fixed Time Model
 - Model V: Economic Lot-size Model with Uniform Rate of Demand, Infinite Rate of Demand
- Contd...
...Contd: Operations Research

Production and Having Shortages which are to be Fulfilled • Model VI: Economic Lot-size Model with Uniform Rate of Demand, Finite Rate of Production and having Shortages which are to be Fulfilled • Multi Item, Deterministic Models with One Constant • Probabilistic Models • Model VII: Single Period Model with Discontinuous or Instantaneous Demand and Time Independent Costs (No Set up Cost Model) • Model VIII: Single Period Model with Uniform Demand (No Set up Cost Model) • Model IX: The General Single Period Model of Profit Maximization with Time Independent Cost • Model X: Probabilistic Order Level System with Lead-Time • Purchase Inventory Models with Price Breaks • Model XI: Purchase Inventory Model • Model XII: Purchase Inventory Model with One Price Break • Model XIII: Purchase Inventory Model with Two Price Breaks • Model XIV: Purchase Inventory Model with Multiple Price Breaks • Replacement Problems • Replacement of Major or Capital Item (Equipment) that deteriorates with Time • To find the Best Replacement Age (Time) of a machine • Few Important Terms • To Determine the Best Replacement Age of Items whose Maintenance Costs Increase with Time and the Value of money also Changes with Time • A Discounted Cost P(r) is Invested by taking Loan at the Interest Rate r; and the Loan is Repaid by Fixed Annual Payments say x, throughout the Life of the Machine. To Find the Minimum Value of x for Optimum Period n at which to Replace the Machine • Replacement of Items in Anticipation of Complete Failure the probability of which increases with Time • To determine the Interval of Optimum Replacement • Problems in Mortality • Staffing Problem • Mortality Tables • Waiting Line or Queuing Theory • Basic Queuing Process (system) and Its Characteristics • Customers Behaviour in a Queue • Important Definitions in Queuing Problem • The State of the System • Poisson Process • Poisson Arrivals • Theorem • Some Distributed • An Important Theorem • Notations • Classification of Queuing Models • Solution of Queue Models • Model I (M/M/1) : (Inf/FCFS) (Birth and Death Model) • Relationship between • Model II (General Erlang Queuing Model) • Model III : (M/M/1) : (Inf/FCFS) • Model IV (M/M/S) : (Inf/FCFS) • Model V : (M/E_k/1) : (Inf/FCFS) • Model VI (M/E_k/1) : (L/FCFS) • Machine Repair Problem • Model VII (M/M/R) : (k/GD), k < R • Model VIII Power Supply Model • Allocation (General Linear Programming Problems) • General Linear Programming Problems • Mathematical Formulation of a L.P.P. • Basic Solution (B.S.) • An Important Theorem • Some Important Definitions • Solution of a Linear Programming Problem • Geometric (or Graphical) Method for the Solution of a Linear Programming Problem • Analytic Method (Trial and Error Method) • Slack and Surplus Variables • Applications of Linear Programming Techniques • Advantages of Linear Programming Techniques • Limitations of Linear Programming • Convex Sets and their Properties • Definitions • Some Important Theorems • Simplex Method • Some Definitions and Notations • Fundamental Theorem of Linear Programming • To obtain B.F.S. from a F.S. • To Determine Improved B.F.S. • Unbounded Solutions • Optimality Conditions • Alternative Optimal Solutions • Inconsistency and Redundancy in Constraint Equations • To Determine Starting B.F.S. • Computational Procedure of the Simplex Method for the Solution of a Maximization L.P. • Artificial Variables Technique • Degeneracy in Simplex Method • Conditions for the Occurrence of Degeneracy in a L.P.P. • Computational Procedure to Resolve Degeneracy by Carner’s Perturbation Method • Some Important Tips for Simplex Method • Linear Programming Problem (Special Cases) • Solution of System of Simultaneous Linear Equations by Simplex Method • Inverse of a Matrix by Simplex Method • Duality in Linear Programming • Standard Form of the Primal • Symmetric Dual Problem • Unsymmetric Dual Problem • The Dual of a Mixed System • Duality Theorems • Correspondence between Primal and Dual • To Read the Solution to the Dual from the Final Simplex Table of the Primal and Vice-Versa • Dual Simplex Method • Advantage of Dual Simplex Algorithm • Computational Procedure of the Dual Simplex Algorithm • Sensitivity Analysis • Variation in the Price Vector c • Variation in the Requirement Vector b • Variation in the Element \(a_{ij} \) of the Coefficient Matrix A • Addition of a New Variable to the Problem • Addition of a New Constraint to the Problem • Parametric Linear Programming • Linear Variations in c • Linear Variation in b • Integer Programming • Importance (or need) of I.P.P. • Solution of I.P.P. • Gomory’s all I.P. Method • Construction of Gomory’s Constraint and Gomory’s Cutting Plane • All-Integer Cutting Plane Algorithm • Mixed-Integer Cutting Plane Algorithm • The Branch and Bound Technique • Branch and Bound Algorithm • Assignment Problem • Important Theorem • Hungarian Method (Reduced Matrix Method) • Unbalanced Assignment Problems • Maximization Assignment Problem • Restrictions on Assignment • Transportation Problem • Difference between a Transportation and an Assignment Problem • Solution of a Transportation Problem • To Find an Initial Feasible Solution • Optimality Test • Theorem • Computational Procedure of Optimality Test • Transportation Algorithm or MODI (Modified Distribution) Method • Degeneracy in Transportation Problem • Unbalanced Transportation Problems • Profit Maximization Problems • Prohibited Transportation Route • Sequencing (Including Travelling Salesman Problem) • A Sequencing Problem • General Assumptions • Sequencing Decision Problem for n-Jobs on two Machines • Sequencing Decision Problem for n-Jobs on Three Machines • Sequencing Decision Problem for n-Jobs on m Machines • Processing Two Jobs Through m Machines • Graphical Method • Travelling Salesman (or Routing) Problem • Dynamic Programming • Bellman’s Principle of Optimality in Dynamic Programming • Multistage Decision Problem • Characteristics of Dynamic Programming Problems • Solution of a Multi-stage Problem by Dynamic Programming with Finite Number of Stages • Solution of Linear Programming Problem as a Dynamic Programming Problem • Solution of an Inventory Problem as a Dynamic Programming Problem • Game Theory (Competitive Strategies) • Competitive Games • Finite and Infinite Games • Zero Sum Game • Two Person Zero Sum (or Rectangular) Games • Pay-off Matrix • Strategy • Solution of a Game • Maximin and Minimax Criterion of Optimality • Saddle Point • Solution of a Rectangular Game with Saddle Point Y Solution of a Rectangular Game in terms of Mixed Strategies Y Important Properties of Optimal Mixed Strategies • Solution of 2 × 2 Games Without Saddle Point • Dominance Property • Arithmetic Method (or the Method of Oddments or the Short Cut Method) for the Solution of 2 × 2 Game without Saddle Point • Graphical Method for the Solution of (2 × n) and (m × 2) Games • Algebraic Method for the Solution of a General Game • Iterative Method for Approximate Solution • Equivalence of the Rectangular Matrix Game and Linear Programming • Fundamental Theorem of Game Theory (Minimax Theorem) • Solution of a Rectangular Game by Simplex Method • Matrix Method for \(n \times n \) (i.e., Square) Games • Summary of Methods for Solving the Rectangular (Two Person Zero Sum) Games • Minimax and Maximin of a Function of Several Variables • Saddle Point of a Function of Several Variables • Necessary and Sufficient
...Contd: Operations Research

242-26

Rigid Dynamics-I (Dynamics of Rigid Bodies)

—P.P. Gupta & G.S. Malik

● Moment of Inertia ● Definitions ● Moments of inertia in some simple cases ● Theorem of parallel axes ● Pappus theorem (solid generated); to find the M.I. of the body ● Pappus theorem (surface generated); to find the M.I. of the body ● Moment of inertia about a line ● To find M.I. about any axis which passes through the intersection of two perpendicular axes in the plane provided M.I.’s and P.I.’s about these axes are known ● Elementary theorem on moment of inertia ● Method of differentiation ● M.I. of heterogeneous bodies ● Momental ellipsoid ● Momental ellipse ● Bodies ● Equipmomental Theories ● Principal axes ● Principal moments ● D’Alembert’s Principle ● Motion of a particle and a Rigid body ● Impressed and Effective forces ● D’Alembert’s Principle ● Angular Momentum ● General equations of Motion ● Linear momentum ● Motion of the Centre of Inertia ● Motion about Centre of inertia ● Impulsive forces ● Impulsive forces continued ● Application of D’Alembert’s Principle to impulsive forces and general equation of motion ● Motion about a Fixed Axis ● Moment of the effective forces about the axis of rotation ● Kinetic Energy ● Equation of Motion ● Compound Pendulum ● Centre of Suspension ● Centre of Suspension and oscillations are Convertible ● Minimum time of oscillation of compound pendulum ● Reaction of the axis of rotation ● Motion about a fixed axis (impulsive forces) ● Centre of Percussion ● Centre of Percussion of a rod ● General case of centre of percussion ● Motion in Two Dimensions ● Equation of motion ● Kinetic energy ● Moment of Momentum ● Motion of a solid sphere down an inclined plane ● Slipping of rods ● A uniform straight rod sliding down in a vertical plane, its ends being in contact with two planes, one horizontal and other vertical ● Motion of a solid sphere down an inclined plane when rolling and sliding are combined ● Motion of a circular disc ● When two bodies are in contact, then to determine whether the relative motion involves sliding at the point of contact ● A sphere of radius “a” where C.G. is at a distance c from its centre C is place on a rough plane so that C.G. is horizontal; show that it will begin to roll or slide according as μ < or > \(\frac{ac}{k^2 + a^2} \) where k is the radius of a sphere about a horizontal axis through G. If μ equal to this value what happens? ● Motion of one sphere over another sphere which if fixed ● Motion of solid cylinder insider a hollow cylinder ● Motion of one body on another, when the lower body is free to turn about its axis ● Motion of one body on another when both bodies are free to move ● Motion in Two Dimensions (Under Impulsive Forces) ● To obtain the equations of motion of a rigid body under impulsive forces ● A rod of length 2a is held in a position inclined at an angle α to the vertical and is the left fall on the smooth inelastic horizontal plane will have it immediately after the impact if the height through which the rod falls is greater than \(\frac{1}{18} a \sec \alpha \cos \epsilon \cos \alpha (1 + 3 \sin^2 \alpha)^2 \) ● An imperfectly elastic sphere impinging on a fixed plane ● Work done by an Impulse ● Conservation of Momentum and Energy ● Principle of conservation of linear momentum (Finite Forces) ● Principle of Angular Momentum ● Conservation of Linear Momentum (Impulsive forces) Conservation of Angular Momentum (Impulsive forces) ● Principle of conservation of energy ● Vis-Viva ● Principle of Vis-Viva ● Conservative forces ● Theorem: When a body moves under the action of a system of conservative force, the sum of its kinetic and potential energies is constant throughout the motion ● The kinetic energy of a Rigid body, moving in any manner is at any instant equal to the kinetic energy of the whole mass, supposed to be collected at its centre of inertia and moving with it, together with the kinetic energy of the whole mass relative to its centre of inertia ● Initial Motion ● Definition ● Lagrange’s Equations of Motion, Small Oscillations, Normal Co-ordinates ● Generalised Coordinates ● Degrees of freedom ● Transformation of equations ● Classification of mechanical systems ● Kinetic energy and generalised velocities ● Generalised forces ● Lagrangian equations ● Lagrangian function ● Generalised momentum ● Kinetic energy as a quadratic function of velocities ● To reduce the principle of energy from the Lagrange’s equations (Conservative field) ● Small oscillations ● Lagrange’s equations with impulsive forces ● Euler Dynamical Equations ● Moving axes and the fixed axes ● Euler dynamical equations ● Kinetic energy of a Rigid Body about a fixed point ● Euler’s equations (impulsive forces) Eulerian angles and geometrical relations ● Instantaneous axis to rotation ● Invariable line ● Locus of the invariable line ● Deduction of Euler’s equations from Lagrange’s equations ● Hamiltonian Formulation and Variational Principles ● Hamilton’s form of the equations of motion ● Physical
significance of the Hamiltonian • Passage from the Hamiltonian to the Lagrangian • Variational methods • Techniques of Calculus of variations • Brachistochrome Problem • Extension of the variational methods • Hamilton’s variational principles • Derivation of Hamilton’s Equations from the variational principle • Principle of least action • Distinction in between Hamilton’s principle and principle of least action • Deduction of Hamilton’s principle using D’Alembert’s principle • Extension of Hamilton’s principle to non-conservative and non-holonomic systems • Motion of Top • Definition • Equation or motion of a top (Derived from Euler’s equations) • Equation of motion of a top (deduced from the principle of energy and momentum) • Equation of motion of top (deduce from Lagrange’s equations) • Steady motion • Stable motion (axis vertical) • Stable motion (axis is not vertical) • Limits of θ.

Rigid Dynamics-II (Analytical Dynamics) —P.P. Gupta & Sanjay Gupta

• Mechanics of a particle • Velocity of a particle • Acceleration of a particle • Linear momentum of the particle • Moment of force (or torque) and angular momentum of the particle • Work done by the force acting on a particle and kinetic energy • Power • Impulse • Conservative force and force field • Conservative theorem for a particle • The equation of motion of a particle D’Alembert’s Principle • Motion of a particle under resisting force • Motion in a resisting medium • The simple Harmonic oscillator • Damped Harmonic oscillator • Two and three dimensional harmonic oscillator • To discuss the motion of a particle executing harmonic vibrations and to find its orbit and frequency • Forced Harmonic oscillator • Central Force Field Motion • Central forces • Central orbit • $h = pu$ • To obtain the law of force, velocity and period time when the orbit is an ellipse • General features of the centre force field motion • Equations of motion for a particle in a central force field • Conservation of energy for central force field • Orbit under a central force (contd.) • Determination of the central force • Kepler’s Laws of planetary motion • bounded motion under in an inverse square field • First integrals of the two body motion under a central force • Reduction of two body problem to one body problem • Orbit under inverse square law • Stability of a nearly circular orbit • Unbounded motion-scattering in a central forces field • Rutherford’s scattering • Centre of mass and Laboratory co-ordinates • Transformation of scattering data from C-system to L-system • Motion of a System of Particles • D’Alembert’s Principle • Linear momentum of a system of particles • Torque on a system of particles • Angular momentum of a system of particles • Kinetic energy of a system of particles • Potential energy of a system of particles • Conservation of energy for the system of particles • Collision Problems • Lagrangian-Dynamics • Constraints and Generalised co-ordinates • Degrees of freedom • Transformation Equations • Classification of Mechanical system • Kinetic energy and generalised velocities • Generalised forces • Lagrange’s equations • Lagrangian function • Generalized momentum • Kinetic energy as quadratic function of velocities • Equilibrium configuration for conservative holonomic dynamical system • To deduce the principle of energy form the Lagrange’s equations (conservative field) • Theory of small oscillations of conservative Holonomic Dynamical systems • Lagrange’s equations with Impulsive Forces • Lagrange’s equations for non-holonomic systems with moving constraints • First integral of motion • Velocities depending potentials • Lagrangian for a charged particle in an electromagnetic field • Lagrange’s equations for electrical circuits • Rigid Body Motion (Including Motion in Three Dimensions) • Degrees of freedom • Orthogonal Transformations • Eulerian angles • Moving Frames of Reference • Kinematics of a rigid body • Kinetic energy of a rigid with a fixed point • Kinetic energy of body in general • Angular momentum of particle and of a system of particles • Angular momentum of a rigid body • Motion of a system • Moving frames of Reference (continued) • Motion of a rigid body (continued) • General motion of a rigid body • General equations of impulsive motion • Theory of Small Oscillations • Equations of Motion for small oscillations • Normal co-ordinates and normal modes of vibration • Systems with a few and may degrees of freedom • Hamiltonian Formulation, Transformations and Hamilton-Jacobi Theory • Hamiltonian Formulation • Phase-space • If the hamiltonian H is independent of t explicitly, prove that H is constant and equal to the total energy of the system • Passage from the Hamiltonian to the Lagrangian • Ignoration of co-ordinates and Routh’s Procedure • Variational Methods (Hamilton’s principle etc.) • Derivation of Hamilton’s equation from the variational principle • Extension of Hamilton’s principle to non-conservative and non-holonomic system • Principle of least action • Principle of least action in terms of arc length of the particle trajectory • Jacobi’s form of the Principle of least action • Fermat’s Principle • Distinction between Hamilton’s Principle and principle of least action • Derivation of Lagrange’s equations from Hamilton’s Principle • Conservation theorems and Symmetry Properties • Homogeneity and Isotropy of space and time conservation laws • Virial Theorem • Liouville’s Theorem • Transformations and Brackets • Point and canonical transformations • Bilinear Invariant as the condition for canonical transformations • Generating Functions • Poicare’s Integral Invariants • Lagrangian and Poisson Brackets • Relation between Lagrange’s and Poisson Brackets • Equation in P.B. notation • Infinitesimal contact transformation (I.C.T.) and Generators • Generator of translatory motion • Contact transformation possesses the group property • Point transformation • To obtain an analytic expression for a contact transformation • Sub-groups of Mathieu transformations and extended point transformation • Hamilton-Jacobi Theory • Hamilton-Jacobi equation • Hamilton-Jacobi equation for Hamilton’s characteristic function • The Hamiltonian being given by $H = \left(\frac{1}{2}m \right) \left(p^2 + (p^2 r^2) \right) - (\lambda/r)$ and to use Hamilton-Jacobi theory to solve Kepler’s Problem for a particle in an inverse square central force field • Harmonic oscillator problem as an example of the Hamilton-Jacobi method • Separation of variables • Action angle variables • Motion of Spinning Tops and Gyroscopes • Simple motion of a top (or Steady precession of a top) • General motion of a top • Steady motion • Stability Investigation • Gyroscopic compass • Mechanics of Continuous Media • Equation of motion for the vibrating string • Propagation of waves along a string • String as a limiting case of a system of particles • Lagrange’s equations for vibrating string.
Contents

244-10

Set Theory and Related Topics

- Basic Concepts of Set
 - Sets
 - Notation
 - Family of sets
 - Equality of sets
 - Finite and Infinite sets
 - Null set
 - Power set
 - Comparability of sets
- Universal set
- Singleton set
- Indexed set
- Basic Set Operations
 - Set operations
 - Union
 - Intersection
 - Disjoint sets
 - Difference of Sets
 - Venn-Euler diagrams
 - Symmetric difference of a set
 - Operations on Comparable sets
 - Distributive law
 - Associative law
 - De-Morgan’s theorem
- Ordered pairs
- Product sets
- Relations
 - Inverse relation
 - Types of Relations
 - Equivalence relation
 - Partial order
 - Equivalence class
- Quotient sets
- Partition of a set
- An important theorem on equivalence relation
- Domain and Range
- Functions
 - Map
 - Domain
 - Range
- Co-domain
- Image
- Preimage
- Onto and Into maps
- One-one map
- Manyone map
- Types of mapping
- Inverse of an element
- Inverse of a set
- Inverse function
 - Equal functions
 - Identity maps
 - Constant maps
- Product of functions
- Associative operation on product of functions
- External, composition
- Natural mapping
- Binary operations
- Commutative and Associative laws
- Algebraic structure
- Spherical Astronomy

245-18

Spherical Astronomy

- Spherical Trigonometry
 - Sphere
 - Section of a Sphere by a Plane
 - Great and small circles
 - Shortest distance Between two Points on a Sphere
- Axis and Poles of a Circle
- Secondary
- Two Great Circles Bisect each other
- Arc Joining Poles
- Measurement of the Spherical Angle
- Length of arc of a Small Circle
- Spherical Triangles
- Polar Triangles
- Some Properties of Spherical Triangles
- Formulæ Relating to an Oblique Spherical Triangle
- Napier’s Analogies
- Delambre’s Analogies
- Right Angled Triangles
- Lune
- Application of Spherical Trigonometry
- Cognat’s Theorem
- L'Huilier’s Theorem
- Expressions for cos (E/2) and tan (E/2)
- Location of a Point on Earth’s Surface
- The Celestial Sphere

37

- Definitions
- Group
- Semi-group
- Commutative group
- Ring Field Integral domain
- Linearly ordered Archimedean field
- Order
- Complete
- Abstract characterization of integers and rationals
- Theorems and solved examples on totally ordered field and integral domains
- Countability of Sets and Cardinal Numbers
- Equivalent sets
- Cardinal numbers
- Sum and product of cardinal numbers
- Finite and infinite sets
- Denumerable sets
- Uncountable
- Power of Continuum
- Comparison of cardinal numbers
- Theorems on cardinal numbers and equivalent sets
- Schroder-Bernstein theorem
- The set of all real numbers in [0, 1] is uncountable
- Q and Z are enumerable sets
- Cantor’s theorem
- Cantor’s tenney set
- Continuum Hypothesis
- Partially ordered sets
- Equivalence relation
- Initial segment
- First and last elements
- Similarity map
- Immediate successor
- Predecessor
- Order type
- Sum and product of order types
- Well ordered sets
- Principle of transfinite induction
- Ordinal number
- Sum and product of ordinal numbers
- Lexicographical ordering
- The order type
- Ordinal numbers
- The set of all real numbers in (a, b) is λ
- Zermelo’s theorem
- Principle of transfinite induction
- Burali-Forti Paradox
- Theorems and solved examples on ordered sets
- Axiom of Choice
- Zorn’s Lemma
- Kuratowski’s Lemma
- Statements of Axiom of choice
- Choice function

- Hausdorff maximal Principle
- Zorn’s lemma
- Proof of Axiom of choice assuming the truth of Zermelo’s postulate
- Proof of Hausdorff maximal principle assuming the truth of Tukey’s lemma
- Zorn’s lemma ⇒ Axiom of choice
- Zorn’s lemma ⇒ Kuratowski’s lemma
- Kuratowski’s lemma ⇒ Zorn’s lemma
- Limit of Sequences
- Cauchy’s first theorem on limits
- Cauchy’s second theorem on limit
- Cesaro’s theorem
- Quotient theorem
- Stolz’s theorem
- Real Sequences (Sequences continued)
- Kinds of sequences
- Fundamental theorems on sequences
- The Number System
 - (Real Numbers)
- Peano axioms
- Rational numbers
- Transcendental numbers
- Algebraic numbers
- Archimedean theorems
- Order completeness theorem
- Q and R dense sets
- Dedekind’s Theory of Real Numbers
- Fundamental properties of the set of rational numbers
- Dedekind’s method of introducing an irrational number
- Set of real numbers
- Real-rational numbers
- Real-irrational numbers
- Some theorems
- Positive, negative and zero real numbers
- Order relations in the set of real numbers
- Four arithmetical operations in the set of real numbers
- The set of all real numbers is dense
- Order completeness of the set of real numbers
- Cantor’s Theory of Real Numbers and Abstract Characterization of Rational and Real Numbers
- Sequence of real numbers and rational numbers
- Convergent sequences
- Arithmetical theory of limits
- Null sequences
- Positive sequences
- Cauchy sequences
- Cauchy’s general principle of convergence
- Theorem on Cauchy sequences and abstract characterization of rational and real numbers
- Cantor’s definition of real numbers
- Positive, negative and zero real numbers
- The four arithmetical operations in the set of real numbers
- The set of real numbers is dense
- Dedekind’s section corresponding to Cauchy sequence of rationals
- Equivalence of the definitions of Dedekind and Cantors
- Arithmetical theory of limits based on Cantor’s theory of real numbers

- Bounded, Derived, Compact, Open and Closed Sets
 - Interval
 - Neighbourhood of a point
 - Limiting point
 - Derived set
 - Closed set
 - Species and order of a set
 - Interior point
 - Open set
 - Closure of a set
 - Boundary of a set
 - Dense set
 - Every where dense set
 - Non-dense set
 - Perfect set
 - Isolated sets
 - Bounds of a linear set
 - Bounded and unbounded sets
 - Cover
 - Open cover, Sub cover
 - Compact set
 - Nested closed Interval property
 - Bolzano-Weierstrass theorem
 - Heine Borel theorem
 - Perfect set
 - Theorems on derived sets.

- Annual motion of the Sun
- System of Co-ordinates
- Hour Angle
- The Altitude of the Pole
- Conversion of co-ordinates from one System to Another
- Equinoxes and Solstices
- Rectangular Co-ordinates
- The Geo-centric Celestial Sphere
- Sidereal Time

Conf...
Contents

...Contd: Spherical Astronomy

Trigonometrical Ratios of small Angles
Rising and Setting of Stars
Relation between Circular measure and Radians
Rate of Change of Zenith Distance (z) and Azimuth (A)
Motion of the Sun
Twilight
Refraction
Laws of Refraction
Apparent and True Positions
Refraction of a Star near the Zenith
Representation of true and Apparent Positions on the Celestial Sphere
Cassini’s hypothesis or homogeneous shell
Differential Equation for Refraction
Simpson’s Hypothesis
Bradley’s Formula
Effect of Refraction on Sunrise and Sunset
Effect of Refraction in Right-Ascension and Declination
Refraction in any direction
Effect of refraction on the distance between two neighbouring stars
Effect of refraction on the shape of the disc of the Sun
Aberration
Definition
Aberration Varies as Sine of the Earth’s Way
Position of the Apex
Representation of Apparent and true Position on Account of Aberration on the Celestial Sphere
Effect of Aberration on Longitude and Latitude
The Aberration Ellipse
Effect of Aberration on Right Ascension and Declination
Independent Day Numbers
Aberration in any Direction
Effect of Aberration on the Distance between Two Stars
Diurnal Aberration
Effect of Diurnal Aberration in Declination, right Ascension and Hour Angle
Planetary Aberration
Precession and Nutation
Precession
Nutation
Physical Cause of Precession and Nutation
Luni Solar Precession
Planetary Precession
Effect of Precession on right Ascension and Declination
Effect of Nutation on right Ascension and Declination
Combined Effect of Precession and Nutation in right Ascension and Declination
Independent Day numbers
Double Stars
Position Angle of a Double Star
Parallax
Definitions
Geo-centric Parallax
Geo-centric Parallax in Right Ascension and Declination
Gec-centric Parallax in Azimuth and Zenith Distance
The Moon’s Size
Steller or Annual Parallax
Representation on the Celestial Sphere
Annual Parallax in Longitude and Latitude
The Parallactic Ellipse
Steller Parallax in right Ascension and Declination
Time
Definitions
The Sun’s Apparent Orbit
The Mean Sun
The Equation of Time
To Prove that the Equation of time Vanishes four Times in a Year
Seasons
Length of the Seasons
Kepler’s Laws of Planetary Motion
Deduction of Kepler’s laws from Newton’s Law of Gravitation
The Definitions
To Express true Anomaly in terms of Eccentric Anomaly
Kepler’s Equation
Kepler’s Problem
To Express true Anomaly in terms of Mean Anomaly
Velocity and Position of a Body in an Elliptic Orbit
Lambert’s theorem, Time of Describing an Elliptic Orbit
Velocity and Position of a Body in a Parabolic Orbit
Euler’s Theorem, Time of Describing a Parabolic Orbit
Velocity and Position of a Body in Hyperbolic Orbit
Planetary Phenomena
Conjunctions
Sidereal Period
Relation between the Sidereal and Synodic Period
Direct and Retrograde Motion
The Geo-centric Motion of a Planet
Elongation
Elongation of a Planet when Stationary
Phases
Phase of the Moon
Brightness
The Meridian Circle
The Three Errors
Correction in the Observed time of Transit due to the Errors
The Total Correction to the Observed time of Transit
Bessel’s Formula
Eclipses
Eclipses of the Moon
Section of the Shadow
Notations
The Angular Radius of the Earth’s Shadow at the Moon’s Distances
Duration of an Eclipse
Length of the Earth’s Shadow
The Eclipsic Limits
Calculation of the Lunar Eclipse
Points on the Moon where the Eclipse Commences
Solar eclipse
The Angle Subtended at the Earth’s centre by the Sun and the Moon at the beginning or end of a Solar Eclipse
Solar Ecliptic Limits
Frequency of eclipses
The Saros
The Metonic Cycle
Determination of Position
The Dip of the Horizon
The Dip of the Horizon Taking Refraction Under Consideration
The Position Circle
Artificial Satellites and Atmospheric Drag
Theory of an Orbit in Space
Clairaut’s Formula for the Shape of the Earth
The Effect of Atmospheric Drag on an Artificial Satellite
Rocket Dynamics
Motion of a Rocket in gravity free Space
Motion of a Rocket in a Gravitation field
Motion of a Rocket or Step Rocket
Two Stage Rocket
Transfer Between Orbit
Changes in the Orbital Elements due to a small and Large Impulses.

246-15 Statics (With Attraction & Potential)

- Forces in Three Dimensions Part 1—Central axis
 Forces in three dimensions
 Moment of a force about a point
 Definitions
 General conditions of equilibrium of a rigid body
- **Forces in Three Dimension Part 2—Constrained Bodies**
 Def. Constrained Bodies
 Condition of equilibrium of a rigid body with one points fixed
 If a rigid body is constrained to turn about two fixed points under the influence of external forces, then to determine the functions of equilibrium
- **Forces in Three Dimension Part 3—Screws and Wrenches**
 Forces in Three Dimensions Part 4—Null lines and Null Planes
 Stable and Unstable Equilibrium (Two and Three Dimension)
 Definitions
 Theorems
 Strings in Two Dimensions
 Suspension bridge
 Equilibrium of a light inextensible string resting on a smooth curve
 Equilibrium of a heavy inextensible string resting on a smooth curve in a vertical plane
 Equilibrium of a light inextensible string resting in equilibrium on a rough plane under the action of no external force
 Equilibrium of a heavy inextensible string resting in limiting equilibrium on rough plane under the action of no external forces
 Central forces
 Extensible strings
 Theorem
 Elastic string, Theorem
 Strings in Three Dimensions
 Equilibrium of a string under any forces
 Equilibrium of string on any surface
 String on the surface of revolution
 Heavy string on a sphere
 Heavy string on a cylindrical surface
 String on a right cone
 String on a rough surface
 Elastic string on a surface
- **Virtual Work Part I—Virtual work in two dimensions**
 Work
 Theorem
 Virtual Work and Virtual Displacement
 Principle of Virtual Work (a system of coplanar forces acting on a rigid body)
 Forces which may be omitted
 Tension of a string or Thrust in a rod
 Method of Solving the problems
 Attraction and Potential
 The law of attraction
 Attraction
 Attraction of a rod
 Attraction of a thin uniform spherical shell
 Attraction of a solid sphere
 Potential (Definition)
 Relation between the attraction and potential
 Potential of a finite rod
 Potential of an infinite rod
 Potential of a Circular disc
 Potential of a spherical shell
 Potential of a solid sphere.
Tensor Calculus and Riemannian Geometry

- Tensor Algebra • Space of N-dimensions • Curve • Transformation of co-ordinates • Summation convention • Indicial (or Range) convention • Dummy suffix • Curvilinear and covariant vectors (Tensor of first order) • Tensors of second order (or of rank two) • The Kronecker delta • Tensor of higher rank (or higher orders) • Invariant or scalar • Algebraic operations with tensors • Addition and subtraction of tensors • Contraction • Product of tensors • Inner Product • Symmetric Tensor • Skew-symmetric Tensor • Quotient law • Generalized Quotient law • Conjugate (or Reciprocal) symmetric tensor • Relative tensor • Some theorems on groups • Tensor field • Metric Tensor and Riemannian Space • The metric tensor, Riemannian metric, Riemannian space • Fundamental contravariant tensor • Length of a curve and Null curve • Associated tensors, Raising and Lowering of indices • Magnitude of a vector, Unit vector, Null vector, Scalar product • Angle between two vectors • Co-ordinates curves • Hypersurface • Angle between two hypersurfaces • Angle between two co-ordinate hypersurfaces • N-ply Orthogonal system of hypersurfaces in a V_N • Curvature of curves • Orthogonal envelope • Principal directions for a symmetric covariant tensor of second order • Homogeneous space • Euclidean space of m-dimensions • Class of V_N • Gradient • Christoffel's Three-Index Symbols (or Brackets), Covariant Differentiation • The Christoffel three Index symbols • Transformation of Christoffel symbols • Covariant differentiation of vectors • Covariant differentiation of tensors • Intrinsic derivative of tensor • Laws of covariant differentiation of tensors • Covariant derivative of a scalar • Derived vector • Tendency of a vector • Cross product of two vectors in tensor notation • Covariant constants, Ricci's theorem • Derived vector • Convergence • Curl of vector • Laplacian operator • Some Important Identities • Curvature of a Curve, Geodesics • First curvature • Principal normal • Geodesics • Euler's condition • Differential equations of Geodesics in a V_N • Geodesic co-ordinates • Riemannian co-ordinates • Geodesic form of the line (or linear) element • Geodesics in Euclidean space S_m • Parallelism, Generalised Covariant Differentiation • Parallelism of vector of constant magnitude (Levi-Civita's Concept) • Some theorems • Parallelism for vector of variable magnitude along a curve • Sub-spaces of a Riemannian Manifold • Some theorems on Subspaces • Parallelism in subspace • Properties of V_m • The Fundamental Theorem of Local Riemannian Geometry • Generalised covariant Differentiation or Tensor Differentiation • Laws of Tensor Differentiation • Riemann Symbols and Curvature Tensor • Riemann Christoffel Tensor or curvature tensor • Riemannian's symbols of the second kind • Ricci Tensor • Covariant curvature tensor and Riemannian symbol of first kind • Bianchi identity • Riemannian curvature of V_N at a point • Formula for Riemannian curvature • Flat space • Schul's Theorem • Mean Curvature • Geometrical interpretation of the Ricci tensor • Ricci's Principal directions • Einstein space • Weyl Tensor • Ricci's Coefficients of Rotation, Congruences • Ricci's coefficients of rotation • Geometrical interpretation of line Reason for the name, "Ricci Coefficient of Rotation" • To find curvature of a congruence • Geodesic congruence • Normal Congruence • Curl of congruence • Irrotational Congruence • Congruence canonical with regard to a given congruence • Linear sum and difference of two congruences • Hyper Surfaces • Gauss's Formulae • Second Fundamental form • Curvature of a curve in a hypersurface and normal curvature of a hypersurface • Meunier's Theorem • Dupin's Theorem • Some definitions • Euler's Formula • Conjugate directions in a hypersurface • Asymptotic direction in a hypersurface • Umbilical points • Totally geodesic hypersurface • Tensor derivative of the unit normal • The Gauss and Codazzi equations • Gauss Formulae • Curvature of a curve in a subspace • Line of curvature for a given normal • Central quadric hypersurfaces in Euclidean space • Polar hyperplane • Evolute of hypersurface v_n in an Euclidean space S_{N-1} • Hypersphere • The e-Systems and Generalized Kronecker Delta • Completely symmetric • Completely skew-symmetric • e-System • Generalized Kronecker Delta • Two theorems • Contraction of $\delta_{\mu\nu}^{\rho}$ • Appendix, Some Preliminaries • Tensor Analysis • Determinants • Differentiation of a determinant • Jacobian or Functional determinant • Matrices • Linear Equation.

Theory of Relativity

- Classical Theory of Relativity: Speed of Light • Inertial Frame (Galilean Frame) • Galilean Transformations • Fictitious Force • Electrodynamics • Fizeau's Experiment • Michelson and Morley Experiment • Explanation of Negative Results (Null Results) • Lorentz Transformations • The New Concept of Space and Time • Postulates of Special Theory of Relativity • Lorentz Transformation Equations • Consequences of Lorentz Transformations • Time Dilation or Apparent Retardation of Rest • An Interesting Example of Time Dilation • Experimental Verification on Time Dilation • Simultaneity • Relativistic Formulae for Composition of Velocities • Relativistic Formulae for Composition of Accelerations • Relativity of Time: Proper Time • Lorentz Transformation Form a Group • Aberration (Relativistic Treatment) • Doppler's Effect • Confirmation of Doppler Effect • Relativistic Mechanics • Mass and Momentum • Newton's Laws of Motion • Measurement of Different Units • Experimental Verification of the Relation • Transformation Formula for Mass • Transformation Formula for Momentum and Energy • Particle with Rest Mass Zero • Binding Energy • Transformation Formula for Force • Relativistic Transformation Formula for Density • Minkowski Space (Four Dimensional Continuum) • Geometrical Interpretation of Lorentz Transformation • Space and Time Like Intervals • World Points and World Lines • Light Cone • Proper Time • Energy-Momentum Four Vector • Four Vector (World Vectors) • Relativistic Equations of Motion • Minkowski's Equation of Motion • Special Relativity in Classical Mechanics • Lorentz Transformation • Relativistic Lagrangian and Hamiltonian • Relativistic Hamiltonian
Topology (General & Algebraic)

- Elements of Set Theory
- Sets and Subsets
- Quantifiers ∀, ∃
- Set
- Sets of Numbers
- Venn-Euler Diagrams
- Basic Operations on Sets
- Cartesian Product of Two Sets
- Relations
- Equivalence Classes
- Partitions
- Quotient Set
- Functions
- Sequences
- Real-valued Functions
- Characteristic Function
- Intervals
- Inverse Mapping
- Product or Composition of Mappings
- Partial Order Relations
- First and Last;
- Maximal and Minimal Elements
- Some Properties of Real Numbers
- Zorn’s Lemma, Well Ordering and Countability
- The Axiom of Choice and Its Equivalents
- Cartesian Product of Arbitrary Collection of Sets
- Lemma
- *Tukey’s Lemma
- *Hausdorff Maximal Principle
- *Zorn’s Lemma
- Well Ordering Theorem
- Well-ordered Set
- Complete Order
- Cardinality and Denumerability
- Schroeder-Bernstein Theorem
- Denumerable Sets
- Decimal,
- Ternary and Binary Representations
- Cardinal Arithmetic
- Exponentiation
- Cantor’s Ternary Set
- Order Types and Ordinal Numbers
- Initial Segments
- Metric Spaces
- The Real Line R
- Sequences in R
- Metric
- Euclidean Spaces
- Some Important Inequalities
- Bounded and Unbounded Metric Spaces
- Some Important Metric Spaces
- Sequence Spaces
- Sphere (or Balls)
- Open Sets
- Closed Sets
- Neighbourhood
- Accumulation Points
- Closure, Interior, Exterior and Boundary of a Set
- Dense and Non-dense Sets
- Sequences and Subsequences in a Metric Space
- Cauchy Sequences
- Complete Metric Spaces
- Baire Category Theorem
- Completions and Contracting Mappings
- Banach’s Fixed Point Theorem
- Some Complete Metric Spaces
- Completion of Metric Space
- Topological Spaces
- Topologies
- Intersection and Union of Topologies
- Metric Topologies
- Metrizable Spaces
- Equivalent Metrics
- Closed Sets
- Neighbourhood
- Base for the Neighbourhood System of a Point
- Base for a Topology
- Topological Space Generated by Collection of Sets
- Limit Points, Adherent Points and Derived Sets
- Hausdorff Spaces
- Closure
- Interior, Exterior and Frontier of a Set
- Separable Spaces
- Relations between Closure, Interior and Frontier
- Sub-spaces
- Finite Product of Topological Space
- Continuity and Homeomorphism
- Continuity
- Continuity of the Composite Function
- Sequential Continuity
- The Pasting Lemma
- Homeomorphism
- Topological Property
- Uniform Continuity
- Connectedness
- Separated Sets
- Connected and Disconnected Sets
- Continuity and Connectedness
- Components
- Totally Disconnected Space
- Locally Connected Spaces
- Arcwise Connectivity
- Compactness
- Open Cover (or covering)
- Compact
- Reducible to Finite Subcover
- Basic and Sub-basic open covers
- Non-compact
- Compact Sub-space
- Finite Intersection Property (FIP)
- Bolzano Weierstrass Property (BWP)
- Compactness in R
- Compactness in R^n
- Countable, Sequential and Local Compactness
- Compactness in Metric Space
- Continuity and Compactness
- Uniform Continuity and Compactness
- Continuity and Local Compactness
- Countability and Separation Axioms
- First Countable Spaces
- Second Countable Spaces
- Separable Spaces
- T_{0} Spaces or Kolmogorov Spaces
- T_{1} Spaces or Frechet’s Separation Axiom
- T_{2} Spaces or Hausdorff Spaces
- Regular Spaces: T_{3} Spaces
- Normal Space: T_{4} Spaces
- Completely Normal Spaces
- Completely Regular Spaces
- Tychonoff Spaces
- One-point Compactification
- Product and Quotient Spaces
- Weak Topologies
- Lattice
- Product Space of Two Spaces
- Projection Mappings
- Product Invariant Properties for Finite Products
- General Product Spaces (Tychonoff Topology)
- Product Topology (or Tychonoff Topology)
- Product Invariant Properties
- Tychonoff Theorem
- Embedding Theorems and Metrizability
- Quotient Spaces
- Upper Semi-continuous Decomposition
- The Stone-Cech Compactification
- Convergence (Net and Filters)
- Sequence in Topological Spaces
- Nets
- Subnets and Cluster Points
- Filters
- Filters Generated by Collection of Sets
- Filter Base
- Ultrafilters
- Convergence of Filters
- Cluster Points of a Filter
- Metrization Theorems and Paracompactness
- Local Finiteness
- The Nagata-Smirnov Metrization Theorem
- Paracompactness
- The Smirnov Metrization Theorem
- The Fundamental Group and Covering Spaces
- Homotopy of Paths
- Homotopy Equivalence
- Retraction and Deformation
- The Fundamental Group
- α-hat
- Covering Spaces
- Fundamental Group of The Circle
- Lifting Lemma
- Covering Homotopy Lemma
- The Fundamental Group of a Product Space
- The Fundamental Theorem of Algebra.
Discrete Mathematics

- Mathematical Logic
 - Statements
 - Negation of a Statement
 - Conjunction
 - Disjunction
 - Truth Tables
 - Conditional and Bi-conditional Statements
 - Propositional Functions and Propositional Variables
 - Tautologies and Contradictions
 - Equivalent Statements or Functions
 - Law of Duality
 - Functionally Complete Set of Operations
 - Quantifiers
 - Arguments
 - Sets, Relations and Functions

- Methods of Describing Sets
 - Equality of Sets
 - Operations on Sets
 - Laws of Algebra of Sets
 - Cartesian Product of Sets
 - Functions
 - Binary Operations or Binary Compositions

- Composition Table
- Relations
- Difference between Relations and Functions
- Properties of Relations on a Set
- Equivalence Relations
- Equivalence Classes
- Partitions
- Partially Ordered Sets
- Countable and Uncountable Sets
- Cardinality of Sets
- Lattices
- Lattices as Partially Ordered Sets
- Some Properties of Lattices
- Lattices as Algebraic Systems
- Sublattices
- Direct Product of Lattices
- Isomorphic Lattices
- Bounded Lattices
- Complements
- Complemented Lattices
- Cover of an Element
- Atoms and Irreducible Elements
- Modular Lattices
- Distributive Lattices

- Discrete Numeric Functions and Generating Functions
- Discrete Numeric Functions
- Asymptotic behaviour of Numeric Functions

- The big O-Notations
- Generating Functions
- Solution of Combinatorial Problems using Generating Functions
- Solution of Recurrence Relations by Generating Functions

- Boolean Algebra
- Subalgebra
- Boolean Algebra as Lattices
- Representation Theorem for Finite Boolean Algebra

- Boolean Functions
- Conjugate Normal form
- Minimization of Boolean Functions
- Karnaugh Maps

- Switching Circuits
- Logic Circuits

- Matrices associated with Graphs
- Incidence Matrix
- Adjacency Matrix
- Path Matrix
- Circuit Matrix
- Cut-set Matrix

- Directed Graphs
- Basic Definitions and Concepts
- Euler Digraphs
- Rooted Trees and Binary Trees
- A cyclic Digraphs
- Matrices in Digraphs

- General Counting Methods
- Sum and Product Rules
- Permutations
- Combinations
- The Principle of Inclusion-Exclusion

- Formal Languages
- Grammars and Finite State Machines
- Languages and Grammars
- Types of Grammars and Languages
- Regular Sets and Regular Languages

- Finite state Machines
- Machine Minimization
- Finite State Machines as Language Recognizers

- Semigroups and Monoids
- Algebraic Structure
- Semigroups
- Homomorphism of Semigroups
- Monoids
- Homomorphism of Monoids
- Congruence Relation and Quotient Semigroups

Advanced Mathematics for Pharmacists

- Differential Equations
- Elementary Integration
 - Definitions
 - Constant of Integration
 - Some properties of integral
 - Fundamental integration formulae
 - Extended forms of fundamental formula
 - Methods of integration
 - Integration by substitution
 - Integral of the product of two functions
 - Integration by parts as applied to the functions of the type $e^x[f(x) + f'(x)]$.
 - Integrals of $e^x\sin bx$ and $e^x\cos bx$.

- Some Special Integrals

- Three special integrals:
 - $\int \frac{dx}{x^2 + a^2}$
 - $\int \frac{dx}{x^2 - a^2}$
 - $\int \frac{dx}{x^2 + a^2}$

- Evaluation of integrals of various types by using standard results.

- Three more special integrals:
 - $\int \frac{dx}{\sqrt{x^2 + a^2}}$
 - $\int \frac{dx}{\sqrt{x^2 - a^2}}$
 - $\int \frac{dx}{\sqrt{x^2 + a^2}}$

- Evaluation of integrals of various types by using standard results.

- Three more special integrals:
 - $\int \frac{dx}{\sqrt{x^2 + a^2}}$
 - $\int \frac{dx}{\sqrt{x^2 - a^2}}$
 - $\int \frac{dx}{\sqrt{x^2 + a^2}}$

- Evaluation of integrals of various types by using standard results.

- Integration of some special irrational algebraic fractions:
 - $\frac{1}{\sqrt{ax^2 + bx + c}}$
 - $\frac{1}{\sqrt{ax^2 + bx + c}}$
 - $\frac{1}{\sqrt{ax^2 + bx + c}}$

- Integrals of the type:
 - $\int \frac{dx}{a + bc \cos x}$
 - $\int \frac{dx}{a + b \sin x}$
 - $\int \frac{dx}{a \sin x + bc \cos x}$

- Integration of $P \cos x + Q \sin x + R \frac{\cos x}{a \cos x + b \sin x + c}$.

- Integration of $\sin^m x \cos^n x$.
...Contd: Advanced Mathematics for Pharmacists

The definite integral as the limit of a sum • Differential Equations of First Order and First Degree • Definitions • Differential equations of first order and first degree • Variables separable • Homogeneous equations • Equations reducible to homogeneous form • Linear differential equations • Equations reducible to the linear form • Exact differential equations • Integrating factors • Change of variables • Linear Differential Equations with Constant Coefficients • Definitions • Determination of complementary function (C.F.) • The Particular Integral (P.I.) • Particular integral in some special cases • To find P.I. when \(Q = e^{ax} \), where \(V \) is any function of \(x \) • To find P.I. when \(Q = e^{ax} + f(\alpha) = C \) • To find P.I. when \(Q = \cos \alpha \) or \(\sin \alpha \) and \(F(-a^2) = 0 \) • To find P.I. when \(Q = xV \), where \(V \) is any function of \(x \) • The operator \(\frac{1}{D - \alpha} \)

Differential Equations • Methods of solving simultaneous linear differential equations with constant coefficients • Number of arbitrary constants • Simultaneous equations of the form \(P_1 \frac{dx}{P} + Q_1 \frac{dy}{Q} + R_1 dz = 0, P_2 \frac{dx}{P} + Q_2 \frac{dy}{Q} + R_2 dz = 0 \), where \(P_1, P_2, Q_1, Q_2, R_1 \) and \(R_2 \) are functions of \(x, y, z \) • Geometrical interpretation of the differential equations \(\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \) • Linear Dependence and Independence of Solutions of Equations

Linear dependence and independence of solutions of an equation • Fundamental set of solutions • Wronskian • Theorem • Biometrics • Data Collection • Primary and Secondary data • Collection of primary data • Collection of secondary data • Limitations of secondary data • Census and Sampling • Population and Sample • Census and sample enquiry • Census versus sample enquiry • Fundamental principles of sampling theory • Method of sampling • Organisation of Data • Classification of data • Object of classification • Basis of classification • Classification according to attributes • Classification by variables • Frequency distribution • Sturge’s rule for number of classes and size of class interval • Cumulative frequency distribution • Diagrammatic Representation of Data • Importance and utility of diagrams • Limitations of diagrams • Rules for construction of diagrams • Types of diagrams • Graphical Representation of Data • The histogram • The frequency polygon • The frequency curve • Cumulative frequency curve or ogive • Graphs of time series or line graphs • Measures of Central Tendency • Objectives of average • Characteristics of a good average • Various measures of central tendency • Some special problems relating to arithmetic mean • Properties of arithmetic mean • Correcting incorrect values • Merits and demerits of arithmetic mean • Median • Calculation of median • Properties of median • Advantages of the median • Partition values • Graphical determination of median quartiles etc. • Quartiles • Mode • Calculation of mode • Determination of mode from mean and median • Measures of Dispersion • Objects and importance of dispersion • Characteristics for a satisfactory measure of dispersion • Absolute and relative measure of variation • Measures of dispersion combined standard deviation • Correcting incorrect values of mean and standard deviation • Coefficient of variation • Mathematical properties of standard deviation • Choice of suitable measure of dispersion • Measures of Skewness and Kurtosis • Skewness • Measure of skewness • Moments • Conversion of moments about an arbitrary origin into moments about mean • Utility of moments • Kurtosis • Measure of Kurtosis • Correlation and Regression • Types of correlation • Methods of determining correlation • Regression • Linear and non-linear regression • Regression lines • Another form of regression lines • Method of fitting regression lines • Probability • A priori or classical definition of probability • A posteriori or empirical probability • Algebra of events • Probability defined on events • Permutations and combinations • Probability of a simple event • Addition rule of probability • Addition rule, when events are not mutually exclusive • Independence and the multiplication rule • Conditional probability • Probability of at least one event • Odds in favour and odds against • Probability based on Bernoulli’s trials • Inverse probability • Baye’s theorem • Random Variable and Probability Distribution • Random variable • Probability distribution • Mean and variance of random variable • Binomial and Poisson distribution • Coefficients of the binomials • Characteristics of binomial distribution • Recurrence formula for the probabilities of binomial distribution • Poisson distribution • Characteristics of Poisson distribution • Recurrence formula for the probabilities of Poisson distribution • Normal distribution • Definition • Some properties of normal distribution • Standard form of the normal distribution • Area under the normal curve • Method of consulting table • Fitting of normal distribution • Statistical Inference • Population and sample • Parameter and statistic • Sampling distribution of the statistic • Standard error of the statistic • Utility of standard error • Statistical inference • Errors in hypothesis testing • Procedure of test of significance • Various tests of significance • Test of significance based on \(t \)-distribution • Test of significance based on \(F \)-distribution • \(\chi^2 \) - distribution • Tests based on \(\chi^2 \) distribution • Analysis of variance • Assumptions • The basic principle of Anova • Analysis of variance of one way classified data • Short-cut method • Coding method • Statistical Tables • Area Under The Standard Normal Curve • Ordinates of The Standard Normal Curve • Critical Values of \(t \)-distribution • Critical Values of \(\chi^2 \)-distribution • Percentage Points of The \(F \) Distribution (Upper 1% Points) • Percentage Points of The \(F \) Distribution (Upper 5% Points) • Value of \(e^{-m} \) • Logarithms • Antilogarithms • Appendix.
...Contd: Basic Mathematics for Chemists

In Terms of Any Three Non- coplanar Vectors i, m, n • Vector Triple Product • Vector Triple Product is not Associative • Scalar Product of Four Vectors • Vector Product of Four Vectors • Reciprocal System of Vectors • Differentiation and Integration of Vectors • Vector Function • Scalar Fields and Vector Fields • Limit and Continuity of a Vector Function • Derivative of a Vector Function With Respect to a Scalar • Differentiation Formulæ • Derivative of a Function $f(A)$ • Derivative of a Constant Vector • Derivative of a Vector Function In Terms of Its Components • Some Important Results • Integration of Vector Functions • Some Standard Results • Gradient, Divergence and Curl • Partial Derivatives of Vectors • The Vector Differential Operator Del (∇) • Gradient of a Scalar Field • Formulas Involving Gradient • Equipotential Surfaces or Level Surfaces • Directional Derivative of a Scalar Point Function • Tangent Plane And Normal To A Level Surface • Divergence of a Vector Point Function • Curl Of A Vector Point Function • The Laplacian Operator ∇^2 • Physical Interpretation of Divergence And Curl • Some Important Vector Identities • Green’s, Gauss’s and Stoke’s Theorems • Some Preliminary Concepts • Line Integrals • Surface Integrals • Volume Integrals • Green’s Theorem In the Plane • Green’s Theorem In The Plane In Vector Notation • Applications Of Green’s Theorem • The Divergence Theorem of Gauss • Some Deductions From Divergence Theorem • Applications of Gauss’s Divergence Theorem • Stoke’s Theorem • Applications of Stoke’s Theorem • Determinants • Determinants of Order 2 • Determinants of Order 3 • Determinants of Order 4 • Minors And Cofactors • Properties of Two Determinants of The Same Order • Working Rule For Finding The Value Of A Determinant • Symbols And Notations To Be Employed For Finding The Values Of A Determinant • Application of Determinants In Solving A System of Linear Equations • System of Linear Non-homogeneous equations in Two Unknowns (Cramer’s Rule) • System of Linear Non-homogeneous Equations In Three Unknowns (Cramer’s Rule) • Algebra of Matrices • Matrix • Special Types Of Matrices • Submatrices of Matrices • Equality of Two Matrices • Addition of Matrices • Properties of Matrix Addition • Properties of Multiplication of A Matrix By A scalar • Multiplication of Matrices • Properties of Matrix Multiplication • Positive Integral of A Square Matrix • Transpose of A Matrix • Symmetric and skew-symmetric Matrices • Conjugate of a Matrix • Transposed Conjugate of a Matrix • Hermitian And skew-Hermitian Matrices • Orthogonal and Unitary Matrices • Singular and Non-singular Matrices • Adjoint and Inverse of a Matrix • Adjoint of a Square Matrix • Inverse or Reciprocal of a Matrix • Linear Equations • Solving Systems of Linear Equations Using Inverse of a Matrix • Submatrix of a Matrix • Rank of a Matrix • Echelon Form of a Matrix • Elementary Operations or Elementary Transformations of a Matrix • Symbols to be Employed For The Elementary Transformations • Elementary Matrices • Vectors • Linear Dependence And Linear Independence of Vectors • Homogeneous Linear Equations • Some Important Conclusions About The Nature of Solutions Of The Equations $AX = 0$ • Working Rule For Finding The Solutions Of the Equation $AX = 0$ • Systems of Linear Non-homogeneous Equations • Condition For Consistency • Condition For A System of n Equations in n Unknowns To Have A Unique Solution • Working Rule For Finding The Solution Of the Equations $AX = B$ • Eigen values and Eigen vectors • Matric Polynomials • Characteristic Values and Characteristic Vectors of a Matrix • Certain Relations Between Characteristic Roots and Characteristic Vectors • Nature of The Characteristic Roots of Special Types of Matrices • The Process of Finding the Eigen values and Eigen vectors of a Matrix • Cayley-Hamilton Theorem • Diagonalisation of a Matrix • Introduction to Vector Space • Some Basic Concepts • Vector space • General Properties of Vector Spaces • Vector Subspaces • Algebra of Subspaces • Linear Combination of Vectors • Linear Sum of Two Subspaces • Linear Dependence and Linear Independence of Vectors • Basis of a Vector Space • Introduction to Tensors • Superscript and Subscript • Space of n-dimensions of Subspace • Curve in n-Dimensional Space • Einstein’s Summation Convention • Transformation of Coordinates • Kronecker Delta • Some Properties of Kronecker Delta • Scalars or Invariants • Contravariant and Covariant (Tensors of Order One) • Tensors of Order Two • Tensors of Higher order (or Higher Rank) • Some Properties of Tensors • Symmetric and skew-symmetric Anti-symmetric Tensor • Addition and Subtraction of Tensors • Functions, Limits and Continuity • Functions • Examples of Some Real Functions • Some Definition and Basic Concepts • Limit of a Function at a Point • Algebra of Limits • Some Important Expansions • Some Important Properties of Limits • Factorisation Method • Evaluation of a Limit When the Direct Substitution Gives The Indeterminate Form • Some Standard Limits • One Sided Limits i.e., Right Hand and Left Hand Limits • Limits at Infinity and Infinite Limits • Continuity • Discontinuity • Jump of a Function at a Point • Working Rule For Checking the Continuity of a Function $f(x)$ At A Point a of its Domain • Cauchy’s Definition of Continuity • Differentiability • Relation Between Continuity and Differentiability • Differentiation • Increments • The Differential Coefficient • Some Standard Results • List of Standard Results to be Committed to Memory • Differential Coefficient of the sum of two Functions • Differential Coefficient of the Product of Two Functions • Differential Coefficient of the Quotient of Two Functions • Differential Coefficient of a Function • Hyperbolic Functions • Inverse Hyperbolic Functions and their Derivatives • Inverse Functions • Differential Coefficients of Inverse Trigonometric Functions • Trigonometric Transformation • Logarithmic Differentiation • Differential Coefficient of the Product of Any Number of Functions • Implicit Functions • Parametric Equations • Differentiation of a Function With Respect to a Function • Differentiation of Infinite Recurring Expressions • Partial Differentiation • Partial Differential Coefficient • Partial Differential Coefficients Of Higher orders • Homogeneous Function • Euler’s Theorem On Homogeneous Functions • Total Differential Coefficient • First Differential Coefficient of an Implicit Function • Applications to Thermodynamics • Applications of Exact and Inexact Differentials to Thermodynamics • Maxima and Minima • Working Rule For Maxima and Minima of $f(x)$ • Applications of Maxima and Minima to Geometrical and Other Problems • Most Probable Speed From Maxwell’s Distribution • Bohr’s Radius • Curve Sketching • Concavity and Convexity • Point of Inflexion • Test for Point of Inflexion • Multiple Points • Singular Points • Classification of Double Points • Species of Cusps • Tangents At Inflexion • Change of Origin • Tangents at the Point (h,k) To A Curve • Curve Tracing • Cartesian Equations • Curve Tracing • Polar Equations • Parametric Equations • Integration • Definitions • Constant of Integration • Some Properties of Integral • Standard Results • Extended Forms of Fundamental Formulae • Methods of Integration
Number Theory

Contd...
...Contd: Number Theory
Fermat's little theorem • Wilson's theorem • Euler's factorization method • Number Theoretic Functions • The function τ and σ • The Mobius function (or the Mobius inversion formula) • The greatest integer function • Euler’s function • Euler’s theorem • Some properties of Euler’s function • Function T(n) • Function S(n) • Function ζ(s) • Function φ(n) • Square free integer • Application to cryptography • Primitive Roots and Indices • The order of an integer modulo n • Primitive roots • Primitive roots for primes • Composite numbers having primitive roots • The theory of indices • Quadratic Congruence and Quadratic Reciprocity Law • Quadratic congruence • Quadratic residue • Euler's residue • Legendre symbol and its properties • Quadratic reciprocity law • Quadratic congruences with composite module • Jacobi symbol • Perfect Numbers • Mersenne primes • Fermat number • Pythagorean triples • Other diophantine equation • Fermat’s last theorem • Sum of Squares of Integers • Sum of two squares • Sum of more than two squares • Waring’s problem • Additional Topics • Types of Number theory • Theta function • ψ-Function • π-Function • Elementary properties of π(x) • Bertrand’s conjecture • Gaussian integer • Properties of Gaussian integer • Partition • Graphical representation of partition • Conjugate partition • Generating function • Some Important Tables • List of prime numbers less than 10,000 • Squares and Cubes of integers, n, where 1 ≤ n ≤ 200 • Least primitive root r of each prime p, where 2 ≤ p ≤ 1,000 • τ(n), σ(n), φ(n) and μ(n) where 1 ≤ n ≤ 100.

Bio-Mathematics

Mathematical Aspects of Population Biology • Some Fundamental Concepts • Models • Mathematical Modelling • Formulation of a Mathematical Model • Solution of a Mathematical Model • Interpretation of the Solution • Types of Models • Limitation of Models • Areas of Modelling • Some Simple Mathematical Models • Mathematical Modelling in Biology or Bio-mathematics • Single Species Models • Stability and Classification of Equilibrium Points • Relationship between Eigen values and Critical Points • Single-species Models (Non-age structured) • Exponential Growth Model • Formulation of the Model • Solution and Interpretation • Limitation of the Model • Effects of Immigration and Emigration on Population • Logistic Growth Model • Solution and Interpretation • Limitation of Logistic Model • Extension of the Logistic Model • Single-species Models (Age Structured) • Continuous-time Continuous-age Scale Population Models • Discrete-time Discrete-age Scale Population Models • Density Dependent Model • Two-sex Models • Continuous-time Discrete-age Population Model • Mc Kendrick Approach to age Structure • Two Species Populations Models • Predator Prey Model • Secular equation for Determining Stability • Some Other Prey-predator Models • Two Dimensional Models and Competition Models • Two Dimensional Model Without Carrying Capacity • Two Dimensional Model with Carrying Capacity • Competition Models • General Continuous Model for Competition • Competition Model with Time Delays • Simple Competition Model • Mathematical Models in Epidemiology • Basic Concepts • SI Model • SIS Model with Constant Coefficient • SIS Model with coefficient is a function of time t • SIS Model with Constant Number of Carriers • SIS Model when the Carriers is a Function of time t • General Deterministic Model with Removal (SIR Model) • Epidemic Model with Vaccination • Biological Fluid Mechanics • Some Basic Concepts of Fluid Dynamics • Poiseuille’s flow • Model for Blood Flow • Properties of Blood • Bifurcation in an Artery • Pulsatile Flow of Blood • Tans-capillary Exchange • Sedimentation.

Cryptography and Network Security

Introduction to Security Attacks • Services and Mechanisms • Introduction to cryptography • Conventional Encryption: Conventional Encryption model • Classical encryption techniques • Substitution ciphers and transposition ciphers cryptographic • Steganography • Stream and block ciphers • Midem Block ciphers: Block Ciphers principles • Shannon’s Theory of Confusion and diffusion • Fiesta Structure • Data Encryption Standards (DES) • Strength of DES • Differential and Linear Cryptanalysis of DES • Block Cipher Modes of Operation • Triple DES • IDEA encryption and decryption • Strength of IDEA • Confidentiality using Conventional Encryption • Traffic confidentiality • Key distribution • Random number generation • Introduction to group • Ring and field • Prime and Relative Prime numbers • Modular arithmetic • Fermat’s and Euler’s Theorem • Primality Testing Euclid’s Algorithm • Chinese Remainder Theorem • Discrete Logarithms • Principles of public key cryptosystems • RSA algorithm • Security of RSA • Key management • Diffie-Hellman key Exchange algorithm • Idea of Elliptic Curve cryptography • Elgelam Encryption • Message Authentication and Hash Function: Authentication requirements • Authentication functions • Message Authentication codes • Hash functions • Birthday attack • Security of Hash function and MACSM, MD3 message digest algorithm • Secure Hash Algorithm (SHA) • Digital Signatures: Digital Signatures • Authentication Protocol • Digital Signature Standard (DSS) • Proof of digital signature algorithm • Authentication Applications: Kerberos and X.509 • Directory authentication service • Electronic Mail security-Pretty Good Privacy (PGP), S/MIME • IP Security: Architecture • Authentication Header • Encapsulating security payloads • Combining security associations • Key management • Web Security: Secure Socket Layer and Transport Layer Security • Secure Electronic Transaction (SET) • System Security: Intruders • Viruses and related threats • Firewall design principles • Trusted systems.
Contents

- Laplace and Inverse Laplace Transforms (Elementary Idea)
- Laplace transform (definitions)
- Linearity property of Laplace transformation
- Laplace transforms of some elementary functions
- Laplace transforms of some elementary functions table
- Laplace transform theorem
- Two important theorems
- Some special functions on their Laplace transforms
- Inverse Laplace Transform
- Inverse Laplace transform (definition)
- Linearity property of inverse Laplace Transform
- Inverse Laplace transform of some elementary functions
- Inverse Laplace transform theorems
- Convolution theorem (or convolution property)
- Heaviside’s expansion theorem or formula
- The complex inversion formula
- Laplace transforms of partial derivatives
- Fourier Transforms
- Dirichlet’s conditions
- Fourier series
- Fourier’s integral formula
- Fourier transforms or complex fourier transform
- Inversion theorem for complex fourier transforms
- Fourier sine transform
- Fourier cosine transform
- Linearity property of fourier transform
- Change of scale property
- Shifting property
- Multiple four transforms
- Convolution
- The convolution or Faltung theorem for fourier transforms
- Relationship between fourier and Laplace transforms
- Fourier transform of the derivative of a function
- Finite fourier transform
- Finite fourier sine transform
- Inversion formula for finite fourier sine transform
- Finite fourier cosine transform
- Inversion formula for fourier cosine transform
- Finite fourier sine and cosine transforms of the derivatives of a function
- Convolution
- Partial Differential Equations of the First Order
- Definitions
- Derivation of partial differential equations
- Some definitions
- Lagrange’s linear partial differential equation
- Lagrange’s solution of the Lagrange’s linear equation
- Lagrange’s method of solving the linear partial differential equation of order one
- Working method
- The linear partial differential equation with n independent variables
- Integral surfaces passing through a given curve
- Compatible system of first-order equations
- Non-linear Partial Differential Equations of First Order (Charpit’s and Jacobi’s Methods)
- Solution of partial differential equations of first order and any degree in some standard forms
- Standard form I: equations involving only p and q and no x, y and z
- Standard form II: equations involving only p, q and z
- Standard from III: equations of the form \(f_{1}(x, p) = f_{2}(y, q) \)
- Standard form IV: equations of the form \(z = p x + q y + f(p, q) \)
- Charpit’s Method: general method of solution of non-linear partial differential equation of order one with two independent variables
- Jacobi’s methods
- Envelopes and Characteristics
- Integral strip and characteristic strip
- Cauchy’s method of characteristics for solving a non-linear partial differential equation
- An important theorem
- Envelope
- Two important theorems on envelopes
- Partial Differential Equations of the Second Order with Variable Coefficients
- The origin of second order partial differential equation
- Special types of second order partial differential equations
- Solutions of equations under given condition
- Classification of Linear Partial Differential Equations
- Classification of linear partial differential equations of second order in n-independent variables
- Classification of linear partial differential equation of second order in two independent variables
- Laplace Transformation, Canonical Forms, Linear Hyperbolic Equations
- Laplace transformation (canonical forms)
- Linear hyperbolic equations (existence theorem)
- Riemann method of solution of general linear hyperbolic equation of the second order
- Wave, Heat, Laplace and Diffusion Equations
- One-dimensional wave equation
- Two dimensional wave equations
- One dimensional heat equation
- Laplace’s equation
- Two dimensional Laplace (or Harmonic) equation in terms of plane polar co-ordinates (r, \(\theta \))
- Laplace’s equation in terms of spherical co-ordinates
- Laplace’s equation in terms of cylindrical co-ordinates
- Diffusion equation
- Applications of Laplace Transform in the Solutions of Partial Differential Equations (Initial and Boundary Value Problems)
- A boundary value problem
- Laplace transforms of some partial derivatives
- Application of Laplace transform to mechanics
- Applications of Fourier Transform in the Solutions of Partial Differential Equations (Initial and Boundary Value Problems)
- Application of infinite fourier transforms
- Choice of infinite fourier sine or cosine transform
- Application of finite four transforms
- The choice of finite fourier sine or cosine transform
- The Wave Equation
- Wave equation in different forms
- Solution of linear partial differential equation by separation of variable method
- Some important and useful series
- Solution of one dimensional wave equation by using the method of separation of variables
- Solution of one dimensional wave equation under the given conditions
- The Riemann- Volterra solution of the one-dimensional wave equation
- Some important and useful differential equations and their solutions
- Solution of two dimensional wave equation
- Vibration of a circular membrane (Solution of two dimensional wave equation in Polar co-ordinates)
- Solution of three dimensional wave equation by method of separation of variables
- Solution of wave equation is cylindrical co-ordinates by the method of separation of variables
- Solution of wave equation in spherical polar co-ordinates by the method of separation of variables
- The Heat (or Diffusion) Equation
- Heat (or Diffusion) equation in different forms
- Solution of one dimensional heat equation by separation of variables
- Solution of one dimensional heat equation under given boundary conditions
- Solution of two dimensional heat equation in cartesian coordinates
- Solution of heat equation in plane polar co-ordinates by separation of variables
- Solution of three dimensional heat equation by the method of separation of variables
- Solution of heat (diffusion) equation in spherical polar coordinates by the method of separation of variables
- Laplace Equation
- Laplace’s (or potential) equation in different forms
- Solution of two dimensional Laplace’s (Harmonic) equation by using the method of separation of variables
- Solution of two dimensional Laplace’s equation under the given conditions
- Solution of Laplace equation in plane polar co-ordinates by separation of variables
- Solution of Laplace’s equation in rectangular cartesian co-ordinates (x, y, z) by the method of separation of variables
- Solution of Laplace’s equation in cylindrical co-ordinates by the method of separation of variables
- Solution of Laplace’s equation in
spherical co-ordinates by the method of separation of variables • **Green’s Functions and Properties of Harmonic Functions** • Some definitions • Green’s function • Green’s function for Laplace equation • Symmetric property of the Green’s function • Helmholtz’s first theorem • Green’s function for the wave equation • Determine the Green’s function for the Helmholtz equation for the half-space \(z \geq 0 \) • Green’s function for the heat equation (diffusion equation) • Harmonic function • Properties of Harmonic function • The spherical mean • Mean value theorem for Harmonic Functions • **Calculus of Variations** • Euler’s equation • Another form of Euler’s equation • Field of extremals • Jacobi condition and Jacobi equation • Legendre condition • Hamiltonian equations • The Hamilton-Jacobi equation • **Transport Equation** • Generalised or weak solution • Transport equation for a linear hyperbolic system.

Advanced Abstract Algebra

- Concepts of Set Theory
- Functions or Mappings
- Types of Mappings
- Sets of Numbers
- Algebraic Structure
- Relation
- Equivalence Relation
- **Prologue to Groups**
- Groupoid
- Semigroups
- Monoids (Semigroups with identity)
- Sub Semigroups
- Commutative Monoid
- Morphisms of Monoids
- Congruence Relation and Quotient Semigroups
- Groups
- Abelian or Commutative Group
- Finite and Infinite Groups
- Integral Powers of an Element
- Order of an Element of a Group
- Modulo Systems
- Division Algorithm
- Residue Classes Modulo \(n \)
- Transformation, Permutation and Permutation Groups
- Cyclic Permutation
- Even and Odd Permutations
- Subgroups of a Group
- Union and Intersection of Subgroups
- Cosets
- Cyclic Groups
- Normal Subgroup
- Conjugate Element
- Normalizer of an Element
- Quotient Group
- Homomorphism of a Group
- **Advanced Theory of Groups**
- Operations of a Group on a Set
- Representations of \(G \) as a group of Permutations
- Isotropy Group
- Isotropy Subgroups
- Applications of \(G \)-sets to Counting
- Maximal Subgroups and Composition Series
- Series of Groups: Normal and Subnormal Series
- Subnormal Series
- Composition Series
- Ascending and Descending Subnormal Chain
- Sylow’s p-Subgroup
- Sylow’s General Theorems
- Nilpotent and Solvable Groups
- Rings and Fields
- Ring
- Elementary Properties of a Ring
- Ring with and Without Zero Divisors
- Cancellation Laws in a Ring
- Field
- Integral Domain and Skew Field
- Subrings: Rings within Rings
- Properties of Subrings
- Subfield: Field within Field
- Characteristic of a Ring
- Characteristic of a Field
- Ordered Integral Domain
- Ordered Relations in an integral Domain
- Polynomial Rings
- Set of All Polynomials Over a Ring
- Ideals
- Homomorphism of Rings
- Theorems on Homomorphisms
- Kernel of a Ring Homomorphism
- Isomorphisms and Quotient Rings
- Principal Ideal
- Principal Ideal Ring
- Divisibility in an Integral Domain
- Units and Associates
- Prime Ideals
- Maximal Ideals
- Embedding of Rings
- Euclidean and Factorization Domains
- Concepts of Divisibility in a Ring
- Prime and Irreducible Elements
- Method of Finding the g.c.d. of Any Two Members of \(F(x) \)
- Euclidean Rings (or Euclidean Domain)
- Unique Factorization Domain
- Polynomial Rings over Unique Factorization Domain
- Field of Quotients of a Unique Factorization Domain
- Eisenstein’s Criterion of Irreducibility
- **Advanced Theory of Rings**
- Primary Decomposition of Ideals
- Gröbner Bases for Ideals
- Rings of Fraction
- Rings with ORE Condition
- Equivalence Relation and Equivalence Class with ORE Condition
- Wedderburn’s Theorem on Finite Division Ring
- Noetherian Rings (Rings With Chain Conditions)
- Noetherian Rings
- Basic Properties of Noetherian Rings
- Decomposition of Ideals in Noetherian Rings
- Artinian Rings
- Basic Properties of Artinian Rings
- Vector Spaces
- Elementary Properties of Vector Spaces
- Vector Subspaces Vector spaces within Vector Spaces
- Elementary Properties of Vector Subspaces
- Algebra of Subspaces
- Linear Sum of Two Subspaces
- Direct Sum of Vector Subspaces
- Linear Combination of Vectors
- Linear Dependence and Independence of Vectors
- Basis of a Vector Space
- Finite Dimensional Vector space
- Dimension of a Subspace of Vector Space
- Cosets
- Addition and Multiplication of Two Cosets
- Quotient Space
- Isomorphism
- Linear Transformations and their Matrix Representations
- Linear Transformation
- Algebra of Linear Transformations
- Linear Operator
- Algebra of Linear Operators
- Range and Null Space of a Linear Transformation
- Invertible Linear Transformation
- Non-singular Linear Transformation
- Co-ordinate Vector
- Matrix Representation of a Linear Transformation
- Change of Basis
- Linear Functionals
- Dual Spaces
- Dual Basis
- Second Dual Space: Bidual Space
- Natural Mapping
- Annihilator
- Annihilator of an Annihilator
- Eigen values and Eigen vector or Linear Transformation
- Minimal Polynomial
- Invariance of Linear Operator
- Diagonalization
- Inner Product Spaces
- Orthogonality and Orthornormality
- The Adjoint of a Linear Transformation
- Properties of the Adjoint
- Self-adjoint Transformation
- Structure of Bilinear Forms
- Bilinear Forms
- Symmetric Bilinear and Quadratic Forms: Law of Inertia
- Orthogonal Diagonalization of the Quadratic Form
- Hermitian Forms
- Matrix Representation of a Hermitian Form
- Canonical Form
- Similarity of Matrices
- Similarity of Linear Transformation
- Invariant Subspace
- Invariant Direct-Sum Decompositions
- Normal Form
- Triangular Form
- Nilpotent Transformation
- Jordan Canonical Form
- Rational Canonical Form
- Modules
- Coset-R Module
- General properties of modules
- Submodules
- Linear Sum of two modules
- Homomorphism of Modules (linear transformations)
- Quotient Modules
- Cyclic module
- **Advanced Theory of Modules**
- Simple and Semi-simple modules
- Free Modules
- Noetherian and Artinian Modules
- Filtered and Graded Modules
- Projective and Injective Modules
- Smith Normal Form Over a PID and Rank

Contd...
Contents

...Contd: Advanced Abstract Algebra

538-02

Spherical Astronomy & Space Dynamics

—J.P. Chauhan

- Spherical Trigonometry
- Sphere
- Axis and Poles of a Circle
- Two great circles bisect each other
- Measurement of the Spherical Angle
- Length of the arc of a small circle
- Spherical Triangles
- Polar Triangles
- Relation between Sides and Angles of a Spherical Triangle
- Right Angled Triangles
- Lune
- Spherical Excess
- Solar System
- Black Hole
- Celestial Sphere
- System of Co-ordinates
- Advantage of this Second System of Co-ordinates
- Hour Angle
- Equinoxes and Solstices
- The Geocentric Celestial Sphere
- Location of a point on Earth’s surface
- Setting of Stars and Twilight
- Rate of change of Zenith distance (z) and Azimuth (A)
- Motion of the Sun
- Twilight
- Refraction
- Refraction of a Star near the Zenith
- Representation of True and Apparent Positions on the Celestial Sphere
- Differential Equation for Refraction
- Aberration
- Precession and Nutation
- Precession (Precession of the equinoxes)
- Nutation
- Effect of precession on right ascension and declination
- Combined effect of precession and nutation in right ascension and declination
- Double stars
- Position angle of a double star
- Parallax
- Relation between v and φ
- Geocentric Parallax
- Geocentric Parallax in Right Ascension and Declination (Earth Taken as Spherical)
- Geocentric Parallax in Azimuth and Zenith Distance
- The Moon’s Size
- Stellar or Annual Parallax
- Annual Parallax in Longitude and Latitude
- The Parallactic Ellipse
- Time
- The Equation of Time
- Seasons
- The Meridian Circle
- The Three Errors
- The total correction to the to the observed time of transit or Mayer’s formula
- Brasse’s formula
- Eclipses of the Moon
- The Angular Radius of the Earth’s Shadow at the Moon’s Distance
- Solar Eclipse
- Determination of Position
- The Dip of the Horizon
- The Position Circle
- Space Dynamics
- Central Orbits
- Central Force
- Central Orbit
- Elliptic Orbit
- Hyperbolic Orbit (Centre of force being the focus)
- Hyperbolic Orbit (Centre of force being the focus)
- Parabolic Orbit (Central of force being the focus)
- Velocity and Position of a body in an Elliptic Orbit
- Velocity and Position of a body in Hyperbolic Orbit
- Find an expression for velocity of body moving in hyperbolic orbit
- Kepler’s Laws of Planetary Motion
- Kepler’s Law
- Newton’s Law of Gravitation
- Artificial Satellites
- History of Artificial Satellites
- Orbital Classification
- Centric Classifications
- Orbital Plane Co-ordinate System
- Orbit Space Or The orbit in Rectangular and Spherical Co-ordinates; Heliocentric and Geocentric System
- The Effect of Atmospheric Drag on an Artificial Satellite
- Motion of Rocket and Transfer Orbits
- Motion of Rocket in Vacuum (Gravity free space)
- Motion of Rocket in a Gravitational Field
- Motion of a Rocket in Atmosphere
- Motion of a Rocket in Space
- Transfer between Circular, Coplanar Orbits
- Parabolic and Hyperbolic Transfer Orbit
- Inter-Planetary and Lunar Trajectories
- Heliocentric and Geocentric Latitudes and Longitudes
- Conjunctions
- Synodic and Orbital Periods
- Interplanetary Trajectories
- Direct and Retrograde Motion
- The Geo-centric Motion of a Planet
- Phases.

539-01 (8)

Space Dynamics

—J.P. Chauhan

- Central Orbits
- Central Force
- Central Orbit
- Elliptic Orbit (Centre of force being the focus)
- Hyperbolic Orbit (Centre of force being the focus)
- Parabolic Orbit (Central of force being the focus)
- Apse, Apsidal Distance and Apsidal Angle
- Velocity from Infinity
- Velocity of fall to the point projection
- Velocity of Circle
- Velocity and Position of a body in an Elliptic Orbit
- Velocity and Position of a Body in Hyperbolic Orbit
- Find an expression for velocity of body moving in hyperbolic orbit
- Velocity of a body
- Kepler’s Laws of Planetary Motion
- Kepler’s Law
- Newton’s Law of Gravitation
- Artificial Satellites
- History of Artificial Satellites
- Orbital Classification
- Centric Classifications
- Orbital Plane Co-ordinate System
- Orbit in Space or the orbit in Rectangular and Spherical Co-ordinates; Heliocentric and Geocentric System
- The Effect of Atmospheric Drag on an Artificial Satellite
- Motion of Rocket and Transfer Orbits
- Motion of Rocket in Vacuum (Gravity free space)
- Motion of Rocket in a Gravitational Field
- Motion of a Rocket in Atmosphere
- Transfer between Circular, Coplanar Orbits
- Parabolic and Hyperbolic Transfer Orbit
- Inter-Planetary and Lunar Trajectories
- Heliocentric and Geocentric Latitudes and Longitudes
- Conjunctions
- Synodic and Orbital Periods
- Interplanetary Trajectories
- Direct and Retrograde Motion
- The Geo-centric Motion of a Planet
- Phases.
Advanced Numerical Analysis

- The Calculus of Finite Differences
 - Finite Differences
 - Differences
 - Difference Formulae
 - Fundamental Theorem of Difference Calculus
 - The Difference Table
 - The Operator E
 - Properties of the Operators E and Δ
 - Relation between Operator E of Finite Differences and Differential Coefficient D of Differential Calculus
 - One or More Missing Terms
 - Factorial Notation
 - Methods of Representing any Given Polynomial in Factorial Notation
 - Differences of Zero
 - Leibniz’s Rule
 - Effect of an Error in a Tabular Value
 - Stirling Numbers
 - Interpolation with Equal Intervals
 - The Following Interpolation Methods are Used
 - Sub-division of Intervals
 - Interpolation with Unequal Intervals
 - Divided Differences
 - Properties of Divided Differences
 - Newton’s Formula for Unequal Intervals
 - Relation between Divided Differences and Ordinary Differences
 - Sheppard’s Rule
 - Lagrange’s Interpolation Formula for Unequal Intervals
 - Iterative Method
 - Hermite Interpolation Formula
 - Spline Interpolation
 - Central Difference Interpolation Formulae
 - Gauss’s Interpolation Formulae
 - Stirling’s Formula
 - Bessel’s Formula
 - Laplace-Everett Formula
 - Use of Various Interpolation Formulae
 - Numerical Differentiation
 - Direct Methods (using formula)
 - Maxima and Minima of a Tabulated Function
 - Numerical Integration
 - A General Quadrature Formula for Equidistant Ordinates
 - The Trapezoidal Rule
 - Simpson’s One-Third Rule
 - Simpson’s Three-Eighth’s Rule
 - Boole’s Rule
 - Weddle’s Rule
 - Error in Quadrature Formulae
 - Cote’s Method
 - The Euler-Maclaurin’s Summation Formula
 - Stirling’s Formula for Approximation to Factorials
 - Method of Undetermined Coefficients
 - Integration Formula
 - Quadrature Formulae Based on Central Differences
 - Lozenge Diagrams for Quadrature Formulae
 - Romberg Integration
 - Hardy’s Formula
 - Numerical Double Integration
 - Gaussian Integration
 - Approximations and Errors in Computation
 - Floating Point Representation of Numbers
 - Arithmetic operations with Normalized Floating Point numbers
 - Numbers and their Accuracy
 - Errors and their Analysis
 - General Method of Finding Remainder Term
 - Sources of Error
 - Chopping
 - Absolute, Relative and Percentage Errors
 - Error in the Approximation of a Function
 - Error Committed in a Series Approximation
 - Order of Approximation
 - Remainder Term of Various Interpolation Formulae
 - Errors in Different Quadrature Formulae
 - Numerical Solutions of Ordinary Differential Equations of First and Second Order
 - Picard’s Method of Successive Approximations
 - Euler’s Method
 - Improved Euler’s Method
 - Modified Euler’s Method
 - Taylor’s Series Method
 - Runge’s Method
 - Runge Kutta Method
 - Predictor and Corrector Method
 - Milne’s Method
 - Adams-Bash Forth Method
 - General Approach to Predictors and Correctors
 - Simultaneous Differential Equation (first order)
 - Differential Equation of Second Order
 - Numerov’s Method
 - Boundary Value Problems
 - Error Analysis
 - Convergence of a Method
 - Stability Analysis
 - Solution of Algebraic and Transcendental Equations
 - Some Properties of Equations
 - Nearly Equal Roots
 - Rate of Convergence of Newton’s Method
 - When there exist Double Roots
 - Solution of Numerical Equations (Contd.)
 - Contraction of Horner’s Method
 - Solution of Simultaneous Linear Algebraic Equations
 - Different Methods of Obtaining the Solutions
 - Newton-Raphson Method for Solving Non-linear Simultaneous Equations
 - Matrix Inversion
 - Gauss Elimination Method
 - Gauss-Jordan Method
 - Triangularization Method
 - Crout’s Triangularisation Method
 - Doolittle Method
 - Choleski’s Method
 - Iterative Method
 - Escalator Method for Matrix Inversion
 - Complex Matrices and Inversion.

Analysis-I (Real Analysis)

- The Riemann-Stieltjes Integral
 - A Generalization of the Riemann Integral
 - Riemann-Stieltjes Sums
 - Riemann Stieltjes Integrals
 - Necessary and Sufficient Condition for RS-integrability
 - The RS-integral as a Limit of Sums
 - Some Classes of Riemann-Stieltjes Integrable Function
 - Algebra of RS-integrable Functions
 - RS-integrability of Composite Functions
 - Mean Value Theorem
 - Rectifiable Curves
 - Integration of Vector Valued Functions
 - A Relation Between R-integrable and RS-integrable
 - Integration and Differentiation
 - Fundamental Theorem of Calculus
 - Integration by Parts
 - Change of Variable
 - Function of Bounded Variation
 - Uniform Convergence of Sequences and Series of Functions
 - Pointwise Convergence [in Metric Space]
 - Uniform Convergence
 - Cauchy’s General Principle of Uniform Convergence
 - Dini’s Criterion for Uniform Convergence of a Sequence of Continuous Functions
 - Tests for Uniform Convergence
 - Uniform Convergence and Continuity
 - Uniform Convergence and Integration
 - Uniform Convergence and Differentiation
 - Uniform Convergence of an Infinite Product
 - Weierstrass Approximation Theorem
 - Arzela’s Theorem
 - Equi-continuous Families
 - Power Series
 - Definition and Some Elementary Theorem
 - Radius of Convergence
 - Uniform Convergence of Power Series
 - Properties of Power Series
 - Uniqueness for Power Series
 - Abel’s Summability
 - Functions of Several Variables
 - Introduction of Contd...
...Contd: Analysis-I (Real Analysis)

Real Analysis

● Real Number System (Bounded and unbounded sets of real numbers. Neighbourhoods and limit points) ● Field axioms ● Some properties of real numbers ● Absolute value or modulus of a real number ● Bounded and unbounded subsets of real numbers ● Least upper bound or supremum ● Greatest lower bound or infimum ● Some properties of supremum and infimum ● Completeness axiom, Existence of supremum and infimum of bounded sets ● The set of real numbers as a complete ordered field ● Archimedean property of real numbers ● The denseness property of the real number system ● Neighbourhood of a point ● Limit points of a set ● Bolzano Weierstrass theorem ● Sequences ● Subsequences ● Bounded sequences ● Convergent sequences ● Divergent sequences ● Algebra of convergent sequences ● Monotonic sequences ● Limit points of a sequence ● Cauchy sequences ● Cauchy’s general principle of convergence ● Limit superior and limit inferior of a sequence ● Nested interval theorem or Cantor’s intersection theorem ● Infinite Series ● Convergence and divergence of Series ● Cauchy’s general principle of convergence for series ● The auxiliary Series $\sum (1/n^p)$ ● Comparison test ● Cauchy’s Root test ● D’Alembert’s ratio test ● Cauchy’s condensation test ● Raabe’s test ● Logarithmic test ● De Morgan’s and Bertrand’s test ● Gauss’s test ● Cauchy Maclaurin’s integral test ● Alternating series test ● Alternating series test (Leibnitz’s test) ● Absolute convergence and conditional convergence ● Limits and Continuity ● Definition of limit ● Algebra of limits ● Right hand and left hand limits ● Infinite limits ● Cauchy’s definition of continuity ● Types of discontinuity ● Algebra of continuous functions ● Properties of continuous functions ● Uniform continuity ● Differentiability ● Derivative at a point ● Derivative of a function ● A necessary condition for the existence of finite derivatives ● Algebra of derivatives ● Rolle’s theorem ● Lagrange’s mean value theorem ● Cauchy’s mean value theorem ● Taylor’s theorem with Lagrange’s form of remainder ● Taylor’s theorem with Cauchy’s form of remainder ● Taylor’s series ● Maclaurin’s series ● Maclaurin’s expansion of some basic functions $e^x, \sin x, \text{ etc.}$

● The Riemann Integral ● Partitions and Riemann sums ● Upper and lower Riemann integrals ● Riemann integrability ● Riemann’s necessary and sufficient conditions for R-integrability ● Some classes of integrable functions ● Fundamental theorem of Integral Calculus ● The Riemann-Stieltjes Integral ● A generalisation of the Riemann Integral ● Partitions ● Lower and upper Riemann-Stieltjes sums ● The lower and upper Riemann-Stieltjes Integrals ● The Riemann-Stieltjes integral ● The RS-integrals as a limit of sums ● Some classes of RS-integrable functions ● A relation between R-integral and RS-integral ● Uniform convergence of sequences and series of functions ● Uniform Convergence ● Cauchy’s general principle of uniform convergence ● Tests for uniform convergence ● Uniform convergence and continuity ● Uniform convergence and integration ● Uniform convergence and differentiation ● Convergence of Improper Integrals ● Tests for convergence of improper integrals of the first kind ● Absolute convergence ● Tests for convergence of improper integrals of the second kind.

Calculus of Variations

–A.R. Vasishtha & Vipin Vasishtha
–Mukesh Kumar Singh
Contents

Krishna's

Fully Solved Series on

MATHEMATICS

for

(All Indian Universities and Competitive Examinations)

Series: Trigonometry

- Inverse Circular Functions
- General and Principal Values of Inverse Circular Functions
- Relations between Inverse Functions
- Some Important Results about Inverse Functions
- Complex Numbers
- Addition of Complex Numbers
- Multiplication of Complex Numbers
- Conjugate of a Complex Number
- Modulus of a Complex Number
- Modulus Argument form or Polar Standard form or Trigonometric form of a Complex Number
- The Points on the Argand Plane Representing the Sum, Difference, Product and Division of two Complex Numbers
- More Properties of Moduli and Arguments
- Integral and Rational Powers of a Complex Number
- De-Moivre's Theorem
- Deductions from De-Moivre's Theorem

(Expansions of sine and cosine functions in power series)
- Expansions of \(\cos n \theta \) and \(\sin n \theta \) in Powers of \(\cos \theta \) and \(\sin \theta \) (n being a positive integer)
- Expansion of \(\tan n \theta \) in Powers of \(\tan \theta \)
- Expansion of \(\tan (\theta_1 + \theta_2 + \theta_3 + \ldots + \theta_n) \)
- Expansions of \(\cos \alpha \) and \(\sin \alpha \)
- Expansion of \(\tan \alpha \) in Powers of \(\alpha \)
- Evaluation of Limiting Values of Indeterminate Forms

Trigonometric and Hyperbolic Functions of a Complex Variable
- (Separation into real and imaginary parts) The Exponential Function of a Complex Variable
- Index Law for the Exponential Functions
- Trigonometrical Functions or Circular Functions of a Complex Variable
- Euler's Theorem
- Periodicity of Functions
- De-Moivre's Theorem for Complex Argument
- Some Standard Trigonometrical Results for Complex Arguments

Hyperbolic Functions
- Relations between Hyperbolic and Circular Functions
- Properties of Hyperbolic Functions
- Expansions in Series for \(\sin h x \) and \(\cos h x \)
- Periods of Hyperbolic Functions
- Separation into Real and Imaginary Parts

Logarithms of Complex Quantities
- Logarithms in the Set of Real Numbers
- Logarithms of Complex Numbers
- Principal and General Values of Logarithm of a Non-zero Complex Number
- Properties of the Logarithmic Function
- Working Rule to Evaluate \(\log (x + iy) \)
- Logarithm of a Positive Real Number in the Set of Complex Numbers
- Logarithm of a Negative Real Number
- The General Exponential Function \(a^x \)
- To Separate \((a + ib)p + iq \) into Real and Imaginary Parts

Inverse Circular and Hyperbolic Functions of Complex Quantities
- Inverse Circular Functions of Complex Quantities
- Inverse Hyperbolic Functions
- Relations between Inverse Hyperbolic Functions and Inverse Circular Functions
- Expansion of Some Trigonometrical Functions
- Expansion of \(\cos^n \theta \) in Terms of Cosines of Multiples of \(\theta \), \(n \) being a Positive Integer
- Expansion of \(\sin^n \theta \) in a Series of Cosines or Sines of Multiples of \(\theta \)
- According as \(n \) (a Positive Integer) is Even or Odd
- Expansion of \(\sin^m \theta \cos^n \theta \)
- Gregory's Series and Trigonometrical Expansions
- Gregory's Series
- General Theorem on Gregory's Series
- Value of \(\pi \)
- Summation of Trigonometrical Series
- Formula for Summing up Trigonometric Series
- Based on Geometric Progression or Arithmetico-Geometric Series
- Based on Binomial Expansions
- Based on Exponential Series
- Series Based on Logarithmic Series and its Sub-case Gregory's Series
- The Difference Method
- Angles in Arithmetical Progression

Series: Matrices

~A.R. Vasishta & A.K. Vasishta

- Algebra of Matrices
- Basic concepts
- Matrix
- Special types of matrices
- Submatrices of a matrix
- Equality of two matrices
- Addition of matrices
- Properties of matrix addition
- Multiplication of a matrix by a scalar
- Multiplication of two matrices
- Properties of matrix multiplication
- A useful way of representing matrix products
- Associative law for the product of four matrices
- Positive integral powers of matrices
- Triangular, Diagonal and Scalar matrices
- Transpose of a matrix
- Conjugate of a matrix
- Transposed conjugate of a matrix
- Symmetric and skew-symmetric matrices
- Hermitian and Skew – Hermitian matrices
- Determinants
- Determinants of order 2
- Determinants of order 3
- Minors and cofactors
- Working rule for finding the value of a determinant
- Determinants of order \(n \)
- Determinant of a square matrix
- Properties of Determinants
- Determinants of order 4
- Product of two determinants of the same order
- System of non-homogeneous linear equations
- (Cramer's Rule)
- Inverse of a Matrix
- Adjoint of a square matrix
- Invertible matrices
- Inverse or Reciprocal of a Matrix
- Singular and non-singular matrices
- Reversal law for the inverse of a product
- Use of the inverse of a matrix to find the solution of a system of linear equations
- Orthogonal and Unitary matrices
- Partitioning of matrices
- Rank of a Matrix
- Sub-matrix of a matrix
- Rank of a matrix
- Elementry transformations of a matrix
- Symbols to be employed for the elementry transformations
- Elementry matrices
- Invariance of rank under elementary transformation
- Reduction to normal form
- Equivalence of Matrices
- Row and column equivalence of matrices
- Employment of only row transformations
- Employment of only column transformations
- The rank of a product
- Use of elementry transformations to find the inverse of a non-singular matrix
- Working rule for finding the inverse of a non-singular matrix by E-row transformations

Linear Equations
- Vectors
- Linear dependence and linear independence of vectors
- A vector as a linear combination of vectors
- Row rank and column rank of a matrix
- Homogeneous linear equations
- Some important conclusions about the nature of solutions of the equation \(AX = 0 \)
- Fundamental set of solutions of the equation \(AX = 0 \)
- Working rule for finding the solutions of the equation \(AX = 0 \)
- System of linear non

Conf...
homogeneous equations • Condition for consistency • Condition for a system of n equations in n unknowns to a unique solution • Eigenvalues and Eigenvectors or Characteristic roots and Characteristic vectors • Matrix polynomials definition • Characteristic polynomial and characteristic equation of a matrix • Cayley–Hamilton theorem.

Series: Algebra

• General Properties of Equations • Synthetic Division • Some Important Results • Relations between the Roots and Coefficients of an Equation • Relations between the Roots and the Coefficients • Particular Cases • The Cube Roots of Unity • Symmetric Functions of the Roots • Order and Weight of a Symmetric Function • The Number of Terms in any Symmetric Function • Symmetric Functions of the Roots Expressed in Terms of the Coefficients • Newton’s Theorem on the Sums of the Powers of the Roots of an Equation • Newton’s Fundamental Theorem on Symmetric Functions • Transformation of Equations • To Transform an Equation into Another whose Roots are the Roots of the Given Equation with their Signs Changed • To Transform an Equation into Another whose Roots are the Roots of the Given Equation Multiplied by a Constant m • To Transform an Equation into Another whose Roots are the Reciprocals of the Roots of the Given Equation • To Transform an Equation into Another whose Roots are any Powers of the Roots of the Given Equation • To Transform an Equation into Another whose Roots are the Roots of the Given Equation Diminished by a Constant h • Removal of Terms • Reciprocal Equation • To Reduce the Cubic with Binomial Coefficients • To Form an Equation whose Roots are the Symmetric Functions of the Roots of a Given Equation • Solution of Cubic Equations • Cardan’s Method of Solving the Cubic Equation • Application of Cardan’s Method to Numerical Equations • Inequalities • Some Elementary Properties of Inequalities • Factorisation • Arithmetic and Geometric Means of two Positive Numbers and the Inequality of these Means • Sum and Product of two Positive Numbers • Arithmetic and Geometric Means of n Positive Numbers and the Inequality of these Means • Arithmetic Mean of the nth Powers • Arithmetic Mean of mth Powers • Cauchy-Schwarz Inequality • Tchebychef’s Inequalities • Tchebychef’s Inequalities for Sets of n Real Numbers • Weirstrass’s Inequalities • Application of Inequalities to Problems of Maxima and Minima • Let a, b, c ... be Any Positive Real Numbers whose Sum a + b + c + ... • Continued Fractions • To Convert a Given Ordinary Fraction into a Simple Continued Fraction • To Convert a Quadratic Surd into a Simple Continued Fraction • Recurring Continued Fraction • Law of Formation of Successive Convergents • Relation between Successive Convergents • Properties of convergents of a simple continued fraction • Limits to the Error: To Find the Limits to the Error Made in Taking any Convergent for the Continued Fraction • To Find Two Positive Integers P and Q Such that QA – PB = ± 1 • Convergence of Infinite Series • Series • Convergence and Divergence of Series • To Discuss the Convergence of a Geometric Series • General Theorems • Cauchy’s Root Test • The Series Σ 1/n^p • Comparison Test • Working Rule for Applying Comparison Test • D’ Alembert’s Ratio Test • Comparison of Ratios • Raabe’s Test • Cauchy’s Condensation Test • The Auxiliary Series Σ 1/n (log n)^p

Kummer’s Test • Gauss’s Test • Logarithmic Test • De Morgan’s or Bertrand’s Test • An Important Test • Summary of the Tests for a Series of Positive Terms • Alternating Series • Leibnitz Test (Alternating Series Test) • Absolute Convergence • Cauchy’s General Principle of Convergence of a Series • Important Theorems about Absolute Convergence • Re-arrangement of the Terms of an Absolutely Convergent Series • Insertion and Removal of Brackets • To Discuss the Convergence and Absolute Convergence of the Binomial Series.

Series: Differential Calculus

• Differentiation • Derivative of a Function • Some Standard Results • Differential Coefficient of a Function of a Function • Hyperbolic Functions • Inverse Hyperbolic Functions • Some More Methods of Differentiation (Logarithmic Differentiation, Implicit Functions, Parametric Equations, Trigonometrical Differentiation, Differentiation of a Function w.r.t. a Function) • Successive Differentiation • Standard Results • Leibnitz’s Theorem • nth Derivative for x = 0 • Expansions of Functions • Taylor’s Series • Maclaurin’s Series • Expansions of Functions (Maclaurin’s Theorem, Taylor’s Theorem) • Some Important Expansions (Exponential Series, Sine Series, Cosine Series, Binomial Series, Logarithmic Expansion) • Partial Differentiation • Functions of Two or More Variables • Homogeneous Functions • Euler’s Theorem on Homogeneous Functions • Total Derivatives • Indeterminate Forms • The Form 0/0 • Algebraic Methods • Form 0/0 • Form 0×∞ • Form =/∞ • The Forms 0^0, 1^∞, ∞^0 • Tangents and Normals • Tangent • Tangents Parallel and Perpendicular to the x-axis • Normal • Angle of Intersection of Two Curves • Length of Cartesian Tangent, Normal, Subtangent and Subnormal • Polar Co-ordinates • Angle between Radius Vector and Tangent • Angle of Intersection of two Polar Curves • Polar Sub-tangent and Polar Sub-normal • Length of Perpendicular from Pole to Tangent • Pedal Equation • Differential Coefficient of arc Length (Cartesian Co-ordinates) • Differential Coefficient of arc Length (Polar Co-ordinates) • Curvature • Radius of Curvature of Intrinsic Curves • Radius of Curvature of Cartesian Curves • Radius of Curvature of Parametric Curves • Radius of Curvature of Pedal Curves • Radius of Curvature of Polar Curves • Tangential Polar Formula for Radius of Curvature • Miscellaneous Formulae for Radius of Curvature when x and y are Functions of arc Length • Radius of Curvature at the Origin (Newton’s Method, Expansion Method, Radius of Curvature at the Pole) • Co-ordinates of Centre of

Contd...
Curvature • Chord of Curvature through the Origin • Chords of Curvature Parallel to Co-ordinate axes • Asymptotes • Determination of Asymptotes • Asymptotes of General Algebraic Curves • Non-existence of Asymptotes • Case of Parallel Asymptotes • Asymptotes Parallel to the Co-ordinates axes • Total Number of Asymptotes of a Curve • Complete Working Rule of Finding the Asymptotes of Rational Algebraic Curves • Asymptotes by Expansion • Alternative Methods of Finding Asymptotes of Algebraic Curves • Asymptotes by Inspection • Intersection of a Curve and its Asymptotes • Asymptotes of Polar Curves • Circular Asymptotes • Change of the Independent Variable • To Change the Independent Variable into the Dependent Variable • To Change Independent Variable x into Another Variable z, when x = f(z) • Change of Both the Dependent and Independent Variables • Transformation in Case of two Independent Variables • Transformation from Cartesian to Polar Co-ordinates and Vice Versa • Maxima and Minima (of Functions of a Single Independent Variable) • Properties of Maxima and Minima • Condition for Maximum and Minimum Values • Working Rule of Maxima and Minima of f(x) • Application of Maxima and Minima to Geometrical and other Problems • Maxima and Minima (of Functions of Two Independent Variables) • Necessary Conditions for the Existence of a Maximum or a Minimum of f(x, y) at x = a, y = b • Stationary and Extreme Points • Sufficient Conditions for Maxima or Minima • Working Rule for Maxima and Minima • Maxima and Minina of Functions of Several Variables and Lagrange’s Method of Undetermined Multipliers • Envelopes and Evolutes • One Parameter Family of Curves • Envelope of a One Parameter Family of Curves • Method for Finding Envelope • Envelope in case the Equation of the Family of Curves is a quadratic in the Parameter • Geometrical Significance of the Envelope • Evolute of a Curve • Length of Arc of an Evolute • Jacobians • Case of Functions of Functions • Jacobian of Implicit Functions • Condition of a Jacobian to Vanish • Singular Points • Concavity and Convexity • Point of Inflexion • Test for Point of Inflexion • Multiple Points • Classification of Double Points (Node, Cusp, Conjugate Point) • Species of Cusps • Tangents at Origin • Change of Origin • Tangent at Any Point to a Curve • Position and Character of Double Points • Nature of a Cusp at the Origin • Nature of a Cusp at any Point • Curve Tracing • Curve Tracing (Cartesian Equations) • Polar Equations • Parametric Equations • Functions of a Real Variable, Limits, Continuity and Differentiability • Limits • Continuity • Differentiability • Rolle’s Theorem, Mean Value Theorems, Taylor’s and Maclaurin’s Theorems • Rolle’s Theorem • Lagrange’s Mean Value Theorem • Some Important Deductions from the Mean Value Theorem • Cauchy’s Mean Value Theorem • Taylor’s Theorem with Lagrange’s form of Remainder After n Terms • Taylor’s Theorem with Cauchy’s form of Remainder.
Series: Differential Equations

- A.R. Vasishtha & S.K. Sharma

448-17

- Introduction
- Differential Equation Definition
- Order and Degree of a Differential Equation
- Ordinary and Partial Differential Equations
- Linear and Non-linear Differential Equations
- Solutions of Differential Equations
- Differential Equations of First Order and First Degree
- Integrating Factors
- Geometrical Problems
- Linear Differential Equations with Constant Coefficients
- Determination of Complementary Function (C.F.)
- The Particular Integral (P.I.)
- Particular Integral in Some Special Cases
- To Find P.I. when \(Q = e^{ax} \), where \(V \) is any Function of \(x \)
- To Find P.I. when \(Q = e^{ax} \) and \(F(0) = 0 \)
- To Find P.I. when \(Q = \sin ax \) or \(\cos ax \) and \(F(-a)^2 = 0 \)
- To Find P.I. when \(Q = ax \), where \(V \) is any Function of \(x \)
- The Operator \(\frac{1}{D - \alpha} \), \(\alpha \) being a Constant
- Orthogonal Trajectories
- Trajectory
- Trajectories-Cartesian Co-ordinates
- Orthogonal Trajectories-polar Coordinates
- Homogeneous Linear Differential Equations
- Method of Solution
- Equations Reducible to Homogeneous Form
- Differential Equations of the First Order but not of the First Degree
- Equations Solvable for \(p \)
- Equations Solvable for \(y \)
- Equations solvable for \(x \)
- Clairaut’s Equation
- Equations Reducible to Clairaut’s Form
- Geometrical Meaning of a Differential Equation of the First Order
- Singular Solutions
- Determination of Singular Solutions with the Help of \(c \)-discriminant and \(p \)-discriminant relations
- Working Rule for Finding the Singular Solution
- The Singular Solution of Clairaut’s equation
- Linear Equations of Second Order with Variable Coefficients
- An Equation of the Form \(\frac{d^2y}{dx^2} + \frac{p}{dx} \frac{dy}{dx} + Qy = R \)
- The Complete Solution in Terms of a Known Integral
- Removal of the First Derivative
- Transformation of the Equation by Changing the Independent Variable
- Method of Variation of Parameters
- Method of Operational Factors
- Guidelines of the Procedure for the Solution of Linear Differential Equations of Second Order
- Ordinary Simultaneous Differential Equations
- Methods of Solving Simultaneous Linear Differential Equation with Constant Coefficients
- Number of Arbitrary Constants
- Simultaneous Equations of the Form
- Geometrical Interpretation of the Differential Equations
- Total Differential Equations
- Necessary and Sufficient Condition for Integrability of Total Differential Equation
- Equation \(P \frac{dx}{P} + Q \frac{dy}{Q} + R \frac{dz}{R} = 0 \)
- The Conditions for Exactness
- Methods for Solving the Differential Equation \(P \frac{dx}{dx} + Q \frac{dy}{dy} + R \frac{dz}{dz} = 0 \)
- Geometrical Interpretation of the Single Differential Equation
- The Locus of \(P \frac{dx}{dx} + Q \frac{dy}{dy} + R \frac{dz}{dz} = 0 \)
- The Locus of Non-integrable Single Differential Equation
- Equations Containing More than Three Variables.
Contents

Series: Analytical Geometry of Two Dimensions

- Change of Axes
- Transformation of Co-ordinates
- Change of Origin (Translation of Axes)
- Rotation of Axes (Change of Directions of Axes)
- Origin Shifted and Axes Rotated
- Hyperbola
- Standard Equation of a Hyperbola
- Second Focus and Second Directrix
- A Geometrical Property of the Hyperbola
- Some Definitions and Results
- Asymptotes
- Rectangular Hyperbola
- Equation of the Rectangular Hyperbola Referred to Asymptotes as Co-ordinate Axes
- Equation of a General Hyperbola Referred to Asymptotes as Axes of Co-ordinates
- Parametric Representation
- Equations of the Chord, Tangent and Normal for the Hyperbola
- Equations of the Chord, Tangent and Normal for the Rectangular Hyperbola
- Conjugate Hyperbola
- Properties of Conjugate Hyperbolas
- Properties of Conjugate Diameters of Conjugate Hyperbolas
- Polar Equation of a Conic (Chord of Contact)
- Conic Section
- Co-ordinates
- To Find the Polar Equation
- To Find the Equation to the Directrix of the Conic
- Two Points on the Conic
- Tangent to the Conic at a Given Point on it
- Asymptotes
- Auxiliary Circle
- To Find the Point of Intersection
- Director Circle
- Pair of Tangents
- Chord of Contact
- Polar
- Perpendicular Lines
- Normal
- Tracing of Conics (General Equation of Second Degree)
- Conic Sections
- To Prove that the General Equation of the Second Degree Always Represents a Conic Section in General
- Centre Definition
- Centre of a Conic
- Asymptotes
- Nature of a Conic
- Lengths and Equations of Axes of a Central Conic
- Eccentricity, Coordinates of the Foci and the Equation of the Directrices of the Central Conic
- Working Rule to Trace an Ellipse or a Hyperbola
- Tracing of a Parabola
- General Conics, Contacts and Confocals
- Equation of a Conic Section
- Conic Through Five Points
- Intersection of a Straight Line and a Conic
- Tangent to the General Conic
- Condition of Tangency
- Polar of a Point or Chord of Contact
- Conjugate Lines
- Chord with a Given Middle Point
- Diameter
- Conjugate Diameters
- To Find the Condition that the two straight lines
- Pair of Tangents
- Director Circle
- From a Focus to a Conic
- To Find the Foci of a Conic
- Axes of the Conic
- Directrices of the Conic
- Contact of Conics
- The Equation of a Family of Conics
- Tangents from an External Point to a Conic Found by the Method of Double Contact
- To Find the General Equation
- To Find the Equation of the Circle
- Equation of a Conic Referred to Tangent and Normal as Coordinate Axes
- Confocal Conics
- Propositions on Confocal Conics
- Ellipse
- Standard Equation of an Ellipse
- Second Focus and Second Directrix
- Some Definition and Results for the Ellipse whose Equation is
- Auxiliary circle
- The Equation of the Chord Joining the Points
- Sub-tangent and Sub-normal
- Tangents from a Given Point (h, k) to the Ellipse
- Director Circle
- Chord of Contact
- Some Propositions on Pole and Polar
- Pole and Polar
- The Equation of the Pair of Tangents from a Point
- Diameter
- Propositions on Diameters
- Propositions on Conjugate Diameters
- Equi-conjugate Diameters
- A Property of Equi-conjugate Diameters
- Supplemental Chords
- Oblique Axes
- Co-normal Points
-Concurrency of Three Normals
- Concyclic Points on an Ellipse
- Centre of a Circle Passing Through Three Given Points on an Ellipse.

Series: Analytical Geometry of Three Dimensions

- Systems of Co-ordinates
- Definitions Origin, Axes and Co-ordinate Planes
- Co-ordinates of a Point in Space
- Properties of Co-ordinates of a Point P
- Octants
- Origin
- The Distance between two Given Points
- Division of a Line
- Centroid of a Triangle
- Spherical Polar Co-ordinates
- Direction Cosines and Projections
- Angle between two Non-coplanar (i.e., Non-intersecting Lines)
- Direction Cosines of a Line
- If the Length of a Line OP
- If, m, n are Direction of cosines of only line AB
- Direction Ratios
- Projection of a Point on a Given Line
- Projection of a Segment of a Line on Another Line (in the Same Plane or Another)
- Projection of a Broken Line on a Given Line, Or Given n Points
- Directions of Cosines
- Projection of a Line Joining two Points
- If O and P are two Points
- (0, 0, 0) and (x1, y1, z1), then to Prove that the Projection of OP on a Line whose Direction Cosines are
- If O and P are two Points
- (x1, y1, z1) and Q (x2, y2, z2) on Another Line whose d.c.’s are i, m, n
- Angle between two Lines
- To Find the Perpendicular Distance of a Point P (x’, y’, z’) from a Line Through A (a, b, c) and whose Direction Cosines are
- The Plane
- The Equation of a Plane (Normal Form)
- To Prove that the General Equation of the first degree
- The Reduce the General Equation of the Plane to the Normal Form
- Intercepts Form
- Plane Through a Given Point and Perpendicular to a Given Line
- Equation of a plane through Three points
- Equations of the co-ordinate Planes
- Angle between Two Planes
- The Two Sides of a Plane
- To Find the Length of the Perpendicular from the Point to a Given Plane
- To Find the Distance between two Parallel Planes
- A Plane Through the Intersection of two Given Planes
- To Find the Condition that a Line
- The Angle between a Line and a Plane
- Equations of the Planes Bisecting the Angles between two Given Planes
- Combined Equation of a Pair of Planes
- Projection on a Plane
- Area of a Triangle
- The Straight Line
- General Equations of a Straight Line
- Symmetrical Form of the Equations of a Straight Line
- Line Through two Points
- To Transform the General form of the Equations of a Straight Line to Symmetrical Form
- The Plane and the Straight Line
- To Find the Equation of the Plane
- To Find the Equation of the Plane Through a Given Line and Parallel to Another Line
- Foot and Length of Perpendicular from a Point to a Line
- Co-planar Lines
- To Determine the Equations of a Straight Line Intersecting two Given Lines
- To Find Contd...
...Contd: Series : Analytical Geometry of Three Dimensions

the Perpendicular Distance of a Point from a Line and the Co-ordinates of the Foot of the Perpendicular ● Intersection of Three Planes ● Shortest Distance ● Skew Lines ● Length the Equations of the Line of Shortest Distance ● Volume of Tetrahedron ● To Find the Volume of a Tetrahedron, whose three Coterminal Edges in the Right-handed Orientation are \(a, b, c \) where \(a, b, c \) are Vectors ● To Find the Volume \(V \) of a Tetrahedron, in terms of the Lengths of Three Concurrent Edges and their Mutual Inclinations ● To Find the Volume \(V \) of a tetrahedron ● Skew Lines ● The Equations of Two Skew Lines ● Change of Axes ● Transformation of Co-ordinates ● Change of Origin (Translation of Axes) ● Change of Directions of Axes (Rotation of Axes) ● Relations between the Direction Cosines of three Mutually Perpendicular Lines ● The Sphere ● Equation of a Sphere ● Plane Section of a Sphere ● Intersection of two Spheres ● The System of Spheres Through a Given Circle ● The Intersection of a Straight Line and a Sphere ● The Equation of the Tangent Plane ● Plane of Contact ● Pole and Polar Plane ● Properties of the pole and the polar plane ● The Polar line ● The Angle of Intersection of Two Spheres ● Touching Spheres ● The Length of the Tangent ● The Radical Plane ● The Properties of the Radical Plane ● The Radical Line (or Radical Axis) ● Radical Centre ● Coaxial System of Spheres ● The Cylinder ● Right Circular Cylinder ● Tangent Plane to a Cylinder ● Enveloping Cylinder ● The Cone ● The Cone with the Vertex at the Origin ● The Line \(x = y = m = z = n \) ● To Find the General Equation of a Cone ● The Equation of the Cone with a Given Vertex and a Given Conic as Base ● To Find the Condition for the General Equation of the Second Degree to Represent a Cone and to Find the Co-ordinates of its Vertex ● The Tangent Line and the Tangent Plane to a Cone ● The Condition of Tangency ● The Reciprocal Cone ● The Angle between the Lines in which a Plane Cuts a Cone ● Three Mutually Perpendicular Generators ● Three Mutually Perpendicular Tangent Planes ● Right Circular cone ● The Enveloping Cone ● Central Conicoids ● The Ellipsoid ● The Hyperboloid of One Sheet ● The Hyperboloid of two Sheets ● The Tangent Plane ● The Condition of Tangency ● The Director Sphere ● The Polar Plane ● Properties of the Polar Planes and the Polar Lines ● Locus of Chords Bisected at a Given Point ● Normal to a Conicoid ● Number of Normals ● Cubic Curve Through the Feet of the Normals ● To Find the Equation of the Cone Through Six Concurrent Normals (The Six Normals Drawn from a Point to an Ellipsoid) ● Diametral Plane ● Conjugate Diameters and Conjugate Diagonal Planes ● The Relationship between the Co-ordinates of the Points \(P, Q, R \) where \(OP, OQ \) and \(OR \) are the Conjugate Semi-diameters of an Ellipsoid ● Properties of Conjugate Semi-diameters of an Ellipsoid.

Series: Modern Algebra

451-07

- A.R. Vasishtha & Kiran Vasishtha

- Mappings, Binary Compositions and Relations ● Functions or Mappings ● ‘Into’ and ‘Onto’ Mappings ● ‘One-one’ and ‘Many-one’ Mappings ● Inverse function ● Composite of Mappings ● Binary operation or Binary composition ● Types of binary operations ● Relation ● Equivalence relations ● Equivalence classes ● Partitions ● Fundamental Theorem on equivalence relations ● Partial order relations ● Groups ● Algebraic structure ● Group Definition ● Abelian group ● Finite and infinite groups ● Order of a finite group ● General properties of a group ● Definition of a group based upon left axioms ● Composition tables for finite sets ● Addition modulo \(m \) ● Multiplication modulo \(p \) ● Residue classes of the set of integers ● An alternative set of postulates for a group ● Permutations ● Groups of permutations ● Cyclic permutations ● Even and odd permutations ● Integral powers of an element of a group ● Order of an element of a group ● Homomorphism and Isomorphism of groups ● Complexes and subgroups of a group ● Intersection of subgroups ● Cosets ● Relation of congruence modulo ● Lagrange’s theorem ● Order of the product of two subgroups of finite order ● Cayley’s theorem ● Cyclic groups ● Rings ● Ring with unity ● Elementary properties of a ring ● Rings with or without zero divisors ● Integral domain ● Field ● Division ring or skew field ● Isomorphism of rings ● Subrings ● Subfields ● Characteristic of a ring ● Ordered integral domains ● Ideals ● Principal Ideal ● Principal Ideal ring ● Divisibility in an integral domain ● Polynomial rings ● Polynomials over an integral domain ● Vector Spaces ● General Properties of vector spaces ● Vectors subspaces ● Linear combination of vectors ● Linear span ● Linear sum of two subspaces ● Linear dependence and linear independence of vectors ● Basis of a vector space ● Finite dimensional vector spaces ● Dimension of a finitely generated vector space ● Dimension of a subspace ● Homomorphism of vector spaces or Linear transformations ● Isomorphism of vector spaces ● Direct sum of spaces ● Dimension of a direct sum ● Complementary subspaces ● Coordinates ● Rings (Continued) ● Divisibility of polynomials over a field ● Division algorithm for polynomials over a field ● Euclidean algorithm for polynomials over a field ● Unique factorization domain ● Quotient rings or Rings of residue classes ● Homomorphism of rings ● Maximal ideal ● Prime ideals ● Euclidean rings ● Normal Subgroups ● Conjugate elements ● Normalizer of an element of a group ● Class equation of a group ● Centre of a group ● Conjugate subgroups ● Invariant subgroups ● Quotient groups ● Homomorphisms of groups ● Kernel of a homomorphism ● Fundamental theorem on homomorphism of groups ● More results on group homomorphism.

Series: Vector Calculus

452-11

- A.R. Vasishtha & A.K. Vasishtha

- Multiple Products ● Scalar triple product ● Vector triple product ● Lagrange’s identity for four vectors ● Vector product of four vectors ● Reciprocal system of vectors ● Differentiation and Integration of Vectors ● Vector function ● Scalar fields and vector field ● Limit and continuity of a vector function ● Derivative of a vector function with respect to a scalar ● Differentiation formulae ● Curves in space ● Integration of vector functions...
Contents

455-16

Series: Statics

456-19

Series: Dynamics

Content: Series: Vector Calculus

- Gradient, Divergence and Curl
- Partial derivatives of vectors
- The vector differential operator \(\nabla \)
- Gradient of a scalar field
- Level surfaces
- Directional derivative of a scalar point function
- Tangent plane and normal to a level surface
- Divergence of a vector point function
- Important vector identities
- Green's, Gauss's and Stoke's Theorems
- Line integrals
- Surface integrals
- Volume integrals
- Green's Theorem in the plane
- The Gauss's divergence theorem
- Stoke's Theorem
- Line integrals independent of path.

Introduction (Concurrent Forces, Lami's Theorem)
- Action and Reaction
- Resultant Force
- Parallelogram of Forces
- \(\lambda - \mu \) Theorem
- Components of a Force in Two Given Directions
- Resolved Parts of a Force Along two Mutually Perpendicular Directions
- Resultant of a Number of Coplanar Forces Acting at a Point
- Conditions of Equilibrium of a Number of Forces Acting at a Point
- Triangle Law of Forces
- Converse of the Triangle of Forces
- Lami's Theorem
- Polygon of Forces
- Equilibrium of a Rigid Body (Moments, Equilibrium of Coplanar Forces)
- Moment of a Force About a Point
- General Theorems of Moments
- Couple
- If Three Forces Acting in one Plane Upon a Rigid Body
- Theorem
- Necessary and Sufficient Conditions for Equilibrium of a Rigid Body
- Equation of the Resultant
- Equilibrium of a Rigid Body Under the Action of Three Forces Only
- Two Important Trigonometrical Theorems
- Virtual Work
- Displacement
- A Rigid Body
- Kinds of Displacement of a Rigid Body
- Rotation of a Rigid Body About a Point
- Position Vector of a Point After a General Displacement
- Work Done by a Force
- Work Done by a System of Concurrent Forces
- Work Done by a Couple During a Small Displacement
- Work Done by a System of Forces During a Small Displacement
- Virtual Displacement and Virtual Work
- The Principle of Virtual Work
- Forces which are Omitted in Forming the Equation of Virtual Work
- Application of the Principle of Virtual Work
- Strings in Two Dimensions (Common Catenary)
- The Catenary
- Intrinsic Equation of the Common Catenary
- Cartesian Equation of the Common Catenary
- Some Important Relations for the Common Catenary
- Sag of Tightly Stretched Wires
- Strings in Two Dimensions (Catenary of Uniform Strength and Strings Resting on a Smooth and Rough Plane Curve)
- Catenary of Uniform Strength
- Law of Variation of the Mass of String
- Equilibrium of a Light Inextensible String Resting on a Smooth Plane Curve
- Equilibrium of a Heavy Inextensible String on a Smooth Curve in a Vertical Plane
- Equilibrium of a Light Inextensible String Resting in Equilibrium on a Rough Plane Under the Action of no External Forces
- Equilibrium of a Heavy Inextensible String Resting in Limiting Equilibrium on a Rough Plane Curve Under the Action of no External Forces
- Stable and Unstable Equilibrium
- The Work Function
- Work Function Test for the Nature of Stability of Equilibrium
- Potential Energy Test for the Nature of Stability of Equilibrium
- z-Test for the Nature of Stability
- Stability of a Body Resting on a Fixed Rough Surface
- Centre of Gravity
- Determination of the C.G. by Integration
- Centre of Gravity of a Plane Area
- Centre of Gravity of a Solid of Revolution
- Centre of Gravity of Surface of Revolution
- Centre of Gravity when the Density Varies
- Use of Multiple Integrals to Find the Centre of Gravity of any Volume
- Equilibrium of Forces in Three Dimensions ([Central Axis] Excluding Wrenches)
- To Find the Resultant of any Given Number of Forces Acting on a Particle
- Necessary and Sufficient Conditions of Equilibrium of a Particle Under the Action of a System of Forces
- Reduction of a System of Forces to a Single Force and a Couple
- Necessary and Sufficient Conditions of Equilibrium of a Rigid Body Under the Action of a System of Forces at any Points of it
- Wrench
- Central Axis
- Characteristics of a Central Axis
- Wrench and Screw
- Invariants
- Conditions for a Single Resultant Force
- Equations of the Central Axis
- Computation of \(X, Y, Z, L, M, N \)
- Constrained Bodies
- Conditions of Equilibrium of a Rigid Body with one Point Fixed
- Conditions of Equilibrium of a Rigid Body with Two Fixed Points
- Forces in Three Dimensions (Screws and Wrenches; Null Lines and Null Planes)
- Null Lines, Null Plane and Null Point (Definitions)
- Null Lines
- To Find the Equation to Null Plane of a Given Point \((a, b, c) \) Referred to Any Axes \(Ox, Oy, Oz \)
- To Find the Null Point of the Plane
- To Find the Condition that the Straight Line
- Conjugate Forces and lines (Def.)
- Screw, Pitch and Wrench (Definitions)
- To Find the Resultant Wrench of Two Given Wrenches
- Reciprocal Screws (Def.)
- Attraction
- The Law of Attraction (Newtonian Law of Gravitation)
- Attraction
- Attraction of a Rod
- Attraction of a Curvilinear Rod
- Attraction of a Thin Uniform Spherical Shell
- Attraction of a Solid Sphere
- Potential
- Relation between the Attraction and Potential
- If \(V \) be the Potential of an Attracting Mass \(M \), at any Point \(P (x, y, z) \), then
- Potential of a Finite Rod
- Potential of an Infinite Rod
- Potential of a Circular Disc
- Potential of a Spherical Shell
- Potential of a Solid Sphere.
Contents

...Contd: Series : Dynamics

Miscellaneous Laws of Forces ● Constrained Motion ● Motion in a Vertical Circle ● Some Important Results of the Motion of a Projectile to be Used in this Chapter ● Motion on the Outside of a Smooth Vetical Circle ● Cycloid ● Motion on a Cycloid ● Motion on the Outside of a Smooth Cycloid with its Axis Vertical and Vertex Upwards ● Simple Pendulum ● Oscillations of a Simple Pendulum ● Beat of a Pendulum ● The Second’s Pendulum ● Gain or Loss of Beats (time) by a Clock ● Central Orbits ● Differential Equation of a Central Orbit ● Rate of Description of the Sectorial Area ● Elliptic Orbit (Focus as the Centre of Force) ● Hyperbolic and Parabolic Orbits (Centre of Force Being the Focus) ● Velocity from Infinity ● Velocity in a Circle ● Given the Central Orbit, to Find the Law of Force ● Apse and Apsidal Distance ● Property of the Apse-Line ● Given the Law of Force, to Find the Orbit ● The Inverse Square Law (Planetary Motion) ● Newton’s Law of Gravitation ● Motion Under the Inverse Square Law ● Kepler’s Laws of Planetary Motion ● Deductions from Kepler’s Laws ● Some Important Geometrical Properties of an Ellipse ● Time of Description of an Arc of a Central Orbit ● To Find the Time of Description of a Given Arc of a Parabolic Orbit Starting from the Vertex ● To Find the Time of Description of a Given Arc of an Elliptic Orbit Starting from the Nearer end of the Major Axis ● To Find the Time of Description of a Given Arc of a Hyperbolic Orbit Starting from the Vertex ● Motion in a Resisting Medium (In a Straight Line Only) ● Terminal Velocity ● Motion of a Particle Falling Under Gravity ● Motion of a Particle Projected Vertically Upwards ● Projectiles ● The Motion of a Projectile and its Trajectory ● Latus Rectum, Vertex, Focuss and Directrix of the Trajectory ● Time of Flight, Horizontal Range and Maximum Height ● Velocity at any Point of the Trajectory ● Locus of the Focus and Vertex of the Trajectory ● Some Geometrical Properties of a Parabola ● Projections to Hit a Given Point ● Range and Time of Flight on an Inclined Plane ● Range and Time of Flight Down an Inclined Plane ● Envelope of the Trajectories with the Same Velocity of Projection ● Paricles Suffered to Describe Parabolic Paths ● Work, Energy and Impulse ● The Concept of Work ● Work Done by a Constant Force ● Work done by a Variable Force ● Units of Work ● Power ● Kinetic Energy ● The Work-energy Principle ● Conservative and Non-conservative Forces ● Potential Energy (P.E.) ● The Principle of Conservation of Energy ● The Principle of Conservation of Energy for the Motion in Plane ● The Principle of Conservation of Linear Momentum ● Impulse Definition When the Force is Constant ● D’Alembert’s Principle (And Equations of Motion of a Rigid Body) ● Motion of a Particle ● Motion of a Rigid Body ● D’Alembert’s Principle ● General Equations of Motion of a Body ● Lineum Momentar ● Motion of the Centre of Inertia ● Motion Relative to the Centre of Inertia ● Impulse of a Force ● An Important Rule ● General Equations of Motion Under Impulsive Forces ● Moments of Inertia ● Moments and Products of Inertia with Respect to Three Mutually Perpendicular Axes ● Some Simple Propositions ● Moment of Inertia of a Uniform Rod of Length 2a ● Moment of Inertia of a Rectangular Lamina ● Moment of Inertia of a Circular Wire ● Moment of Inertia of a Circular Disc ● Moment of Inertia of an Elliptic Disc ● Moment of Inertia of a Uniform Triangular Lamina about One Side ● Moment of Inertia of a Rectangular Parallellopiped about an Axis Through its Centre and Parallel to One of its Edges ● M.I. of a Spherical Shell (i.e., Hollow Sphere) about a Diameter ● M.I. of a Solid Sphere about a Diameter ● M.I. of an Ellipsoid ● Routh’s Rule ● Theorem of Parallel Axis ● Moment of Inertia of a Plane Lamina about a Line ● Principal Axes ● Motion about a Fixed Axis ● Moment of the Effective Forces about the Axis of Rotation ● Equation of Motion of the Body about the Axis of Rotation ● Moment of Momentum about the Axis of Rotation ● Kinetic Energy ● Compound Pendulum ● Time of a Complete Small Oscillation of a Compound Pendulum ● Simple Equivalent Pendulum ● Minimum Time of Oscillation of a Compound Pendulum ● The Centre of Suspension and the Centre of Oscillation of a Compound Pendulum are Convertible ● Reactions of the Axis of Rotation ● Centre of Percussion ● Centre of Percussion of a Rod ● Centre of Percussion (In General Case).
...Contd: Series : Real Analysis

Series: Numerical Analysis
A.R. Vasishtha, S.K. Sharma & Hemlata Vasishtha

Series: Hydrostatics
A.R. Vasishtha, A.K. Vasishtha